cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A081581 Pascal-(1,6,1) array.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016993, A081591, A081592. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows start as:
  1,  1,   1,    1,    1, ... A000012;
  1,  8,  15,   22,   29, ... A016993;
  1, 15,  78,  190,  351, ... A081591;
  1, 22, 190,  848, 2339, ...
  1, 29, 351, 2339, 9766, ...
The triangle starts as:
  1;
  1,  1;
  1,  8,   1;
  1, 15,  15,    1;
  1, 22,  78,   22,    1;
  1, 29, 190,  190,   29,   1;
  1, 36, 351,  848,  351,  36,  1;
  1, 43, 561, 2339, 2339, 561, 43, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • PARI
    t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
    
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 6*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+6*x)^k/(1-x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 7). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(7*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 14*x + 49*x^2/2) = 1 + 15*x + 78*x^2/2! + 190*x^3/3! + 351*x^4/4! + 561*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 6.
Sum_{k=0..n} T(n, k, 6) = A083099(n+1). (End)

A171890 Octonomial coefficient array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 42, 46, 48, 48, 46, 42, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 161, 204, 246, 284, 315, 336, 344, 336, 315, 284, 246, 204, 161, 120, 84, 56, 35
Offset: 0

Views

Author

N. J. A. Sloane, Oct 19 2010

Keywords

Comments

Row lengths are 1,8,15,22,... = 1+7n = A016993(n). Row sums are 1,8,64,... = 8^n = A001018(n). M. F. Hasler, Jun 17 2012

Examples

			Array begins:
[1]
[1, 1, 1, 1, 1, 1, 1, 1]
[1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]
...
		

Crossrefs

The q-nomial arrays are for q=2..10: A007318 (Pascal), A027907, A008287,A035343, A063260, A063265, A171890, A213652, A213651.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 8-nomials as a table
    r := 8:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • Mathematica
    Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)^n, x], {n, 0, 10}]] (* T. D. Noe, Apr 04 2011 *)
  • PARI
    concat(vector(5, k, Vec(sum(j=0, 7, x^j)^k)))  \\ M. F. Hasler, Jun 17 2012

Formula

Row n has g.f. (1+x+...+x^7)^n.
T(n,k) = sum {i = 0..floor(k/8)} (-1)^i*binomial(n,i)*binomial(n+k-1-8*i,n-1) for n >= 0 and 0 <= k <= 7*n. - Peter Bala, Sep 07 2013

A227095 Numbers whose base-8 sum of digits is 8.

Original entry on oeis.org

15, 22, 29, 36, 43, 50, 57, 71, 78, 85, 92, 99, 106, 113, 120, 134, 141, 148, 155, 162, 169, 176, 197, 204, 211, 218, 225, 232, 260, 267, 274, 281, 288, 323, 330, 337, 344, 386, 393, 400, 449, 456, 519, 526, 533, 540, 547, 554, 561, 568, 582, 589, 596, 603
Offset: 1

Views

Author

Tom Edgar, Sep 01 2013

Keywords

Comments

Subsequence of A016993. - Michel Marcus, Sep 03 2013
In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - M. F. Hasler, Dec 23 2016

Examples

			The 8-ary expansion of 15 is (1,7), which has sum of digits 8.
The 8-ary expansion of 78 is (1,1,6), which has sum of digits 8.
10 is not on the list since the 8-ary expansion of 10 is (1,2), which has sum of digits 3 not 8.
		

Crossrefs

Cf. A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10).

Programs

  • Mathematica
    Select[Range@ 603, Total@ IntegerDigits[#, 8] == 8 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    select( is(n)=sumdigits(n,8)==8, [1..999]) \\ M. F. Hasler, Dec 23 2016
    
  • Python
    agen = A226636gen(sod=8, base=8) # generator of terms using code in A226636
    print([next(agen) for n in range(1, 55)]) # Michael S. Branicky, Jul 10 2022
  • Sage
    [i for i in [0..1000] if sum(Integer(i).digits(base=8))==8]
    

A245301 a(n) = n*(7*n^2 + 15*n + 8)/6.

Original entry on oeis.org

0, 5, 22, 58, 120, 215, 350, 532, 768, 1065, 1430, 1870, 2392, 3003, 3710, 4520, 5440, 6477, 7638, 8930, 10360, 11935, 13662, 15548, 17600, 19825, 22230, 24822, 27608, 30595, 33790, 37200, 40832, 44693, 48790, 53130, 57720, 62567, 67678, 73060, 78720, 84665
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Comments

Row sums of the triangle in A245300.

Crossrefs

Programs

Formula

a(n) = n*(n+1)*(7*n+8)/6 = A002378(n)*A016993(n+1)/6.
a(n) = Sum_{j=0..n} A000217(2n-j)+j. - Manfred Arens, Dec 26 2015
G.f.: x*(5 + 2*x)/(1-x)^4. - Vincenzo Librandi, Feb 01 2016
E.g.f.: x*(30 + 36*x + 7*x^2)*exp(x)/6. - G. C. Greubel, Mar 31 2021

A081591 Third row of Pascal-(1,6,1) array A081581.

Original entry on oeis.org

1, 15, 78, 190, 351, 561, 820, 1128, 1485, 1891, 2346, 2850, 3403, 4005, 4656, 5356, 6105, 6903, 7750, 8646, 9591, 10585, 11628, 12720, 13861, 15051, 16290, 17578, 18915, 20301, 21736, 23220, 24753, 26335, 27966, 29646, 31375, 33153, 34980, 36856, 38781, 40755
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

1. Smallest triangular number T(k) (other than the trivial adjacent ones) such that T(n) + T(k) is a square. T(n-1) and T(n+1) are trivial triangular numbers such that T(n) + T(n-1) and T(n) + T(n+1) both are squares. 0+1 = 1, 1+15 = 16, 3+78 = 81, 6+190 = 196 etc. 2. (7n+5)-th triangular number. - Amarnath Murthy, Jun 20 2003

Crossrefs

Programs

  • Magma
    [(2-21*n+49*n^2)/2: n in [0..50]]; // Vincenzo Librandi, Jun 18 2011
    
  • Mathematica
    Table[(2-21n+49n^2)/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,15,78},40] (* Harvey P. Dale, Aug 03 2012 *)
  • PARI
    a(n)=(2-21*n+49*n^2)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (2 - 21*n + 49*n^2)/2.
G.f.: (1+6*x)^2/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=15, a(2)=78. - Harvey P. Dale, Aug 03 2012
E.g.f.: exp(x)*(2 + 28*x + 49*x^2)/2. - Elmo R. Oliveira, Jun 09 2025

A154680 Triangle read by rows where T(m,n)=2*m*n + m + n - 2.

Original entry on oeis.org

2, 5, 10, 8, 15, 22, 11, 20, 29, 38, 14, 25, 36, 47, 58, 17, 30, 43, 56, 69, 82, 20, 35, 50, 65, 80, 95, 110, 23, 40, 57, 74, 91, 108, 125, 142, 26, 45, 64, 83, 102, 121, 140, 159, 178, 29, 50, 71, 92, 113, 134, 155, 176, 197, 218, 32, 55, 78, 101, 124, 147, 170, 193, 216, 239, 262
Offset: 1

Views

Author

Vincenzo Librandi, Jan 18 2009

Keywords

Comments

All terms are in A153052.
First column: A016789; second column: 5*A000027; third column: A016993; fourth column: A017185. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
2;
5,  10;
8,  15, 22;
11, 20, 29, 38;
14, 25, 36, 47, 58;
17, 30, 43, 56, 69,  82;
20, 35, 50, 65, 80,  95,  110;
23, 40, 57, 74, 91,  108, 125, 142;
26, 45, 64, 83, 102, 121, 140, 159, 178;
29, 50, 71, 92, 113, 134, 155, 176, 197, 218; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k+n+k-2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 18 2012
  • Mathematica
    Flatten[Table[Floor[2 n m + m + n - 2], {n, 1, 16}, {m, n}]] (* Vincenzo Librandi, May 14 2012 *)

A155551 Triangle read by rows where T(m,n)=2*m*n + m + n - 9.

Original entry on oeis.org

-5, -2, 3, 1, 8, 15, 4, 13, 22, 31, 7, 18, 29, 40, 51, 10, 23, 36, 49, 62, 75, 13, 28, 43, 58, 73, 88, 103, 16, 33, 50, 67, 84, 101, 118, 135, 19, 38, 57, 76, 95, 114, 133, 152, 171, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 25, 48, 71, 94, 117, 140, 163, 186, 209
Offset: 1

Views

Author

Vincenzo Librandi, Jan 24 2009

Keywords

Comments

The numbers 2*T(m,n)+19 =(2*n+1)*(2*m+1) are not prime.
First column: A016777, second column: A016885, third column: A016993, fourth column: A017209. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
-5;
-2, 3;
1,  8,  15;
4,  13, 22, 31;
7,  18, 29, 40, 51;
10, 23, 36, 49, 62,  75;
13, 28, 43, 58, 73,  88,  103;
16, 33, 50, 67, 84,  101, 118, 135;
19, 38, 57, 76, 95,  114, 133, 152, 171;
22, 43, 64, 85, 106, 127, 148, 169, 190, 211; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k - 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A176972 a(n) = 7^n + 7*n + 1.

Original entry on oeis.org

2, 15, 64, 365, 2430, 16843, 117692, 823593, 5764858, 40353671, 282475320, 1977326821, 13841287286, 96889010499, 678223072948, 4747561510049, 33232930569714, 232630513987327, 1628413597910576, 11398895185373277, 79792266297612142, 558545864083284155, 3909821048582988204
Offset: 0

Views

Author

Jonathan Vos Post, Apr 29 2010

Keywords

Examples

			a(5) = 7^5 + 7*5 + 1 = 16843 is prime.
		

Crossrefs

Programs

  • Magma
    [7^n + 7*n + 1: n in [0..25]]; // Vincenzo Librandi, May 06 2011
  • Mathematica
    Table[7^n+7n+1,{n,0,20}] (* or *) LinearRecurrence[{9,-15,7},{2,15,64},20] (* Harvey P. Dale, Apr 17 2014 *)

Formula

a(n) = A000420(n) + A008589(n) + 1 = A000420(n) + A016993(n).
a(n) = 7*a(n-1) - 42*(n-1) + 1, with n > 0. For n=5, a(5) = 7*2430 - 42*4 + 1 = 16843. - Bruno Berselli, May 18 2010
From R. J. Mathar, May 22 2010: (Start)
a(n) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3).
G.f.: (-2 + 3*x + 41*x^2) / ((7*x-1)*(x-1)^2). (End)
E.g.f.: exp(x)*(1 + exp(6*x) + 7*x). - Stefano Spezia, Aug 19 2024

A131844 3*A131821 - 2.

Original entry on oeis.org

1, 4, 4, 7, 1, 7, 10, 1, 1, 10, 13, 1, 1, 1, 13, 16, 1, 1, 1, 1, 16, 19, 1, 1, 1, 1, 1, 19, 22, 1, 1, 1, 1, 1, 1, 22, 25, 1, 1, 1, 1, 1, 1, 1, 25, 28, 1, 1, 1, 1, 1, 1, 1, 1, 28, 31, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 34, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 37, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 37, 40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 40
Offset: 0

Views

Author

Gary W. Adamson, Jul 22 2007

Keywords

Comments

Row sums = A016993, (7n + 1): (1, 8, 15, 22, 29, ...).

Examples

			First few rows of the triangle:
   1;
   4,  4;
   7,  1,  7;
  10,  1,  1, 10;
  13,  1,  1,  1, 13;
  16,  1,  1,  1,  1, 16;
  ...
		

Crossrefs

Formula

3*A131821 - 2 as infinite lower triangular matrices.
Infinite lower triangular matrix, (3n + 1): (1, 4, 7, 10, ...) as right and left borders and the rest 1's.

Extensions

More terms from Russ Cox, Apr 18 2024

A139615 a(n) = 105*n + 15.

Original entry on oeis.org

15, 120, 225, 330, 435, 540, 645, 750, 855, 960, 1065, 1170, 1275, 1380, 1485, 1590, 1695, 1800, 1905, 2010, 2115, 2220, 2325, 2430, 2535, 2640, 2745, 2850, 2955, 3060, 3165, 3270, 3375, 3480, 3585, 3690, 3795, 3900, 4005, 4110, 4215
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 15th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 15th column in the square array A057145.

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Apr 04 2024: (Start)
G.f.: 15*(1+6*x)/(x-1)^2.
E.g.f.: 15*exp(x)*(1 + 7*x).
a(n) = 15*A016993(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
Previous Showing 11-20 of 32 results. Next