cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 66 results. Next

A354938 Row 8 of A354940: Numbers k for which A345992(k) = 8, divided by 8.

Original entry on oeis.org

3, 9, 11, 17, 19, 25, 27, 33, 41, 43, 49, 57, 59, 67, 73, 81, 83, 89, 97, 105, 107, 113, 121, 129, 131, 137, 139, 145, 161, 163, 169, 177, 179, 185, 193, 201, 209, 211, 217, 225, 227, 233, 241, 243, 249, 251, 257, 281, 283, 289, 297, 305, 307, 313, 321, 329, 331, 337, 345, 347, 353, 361, 377, 379, 393, 401, 409, 417
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 8k+1 (in A017077) or 8k+3 (in A017101).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 8*n], m++]; GCD[8*n, m] == 8]; Select[Range[420], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354938(n) = A354940sq(8,n);

A370267 Numbers with an even number of prime factors not of the form 8m+-1 (counting repetitions).

Original entry on oeis.org

1, 4, 6, 7, 9, 10, 15, 16, 17, 22, 23, 24, 25, 26, 28, 31, 33, 36, 38, 39, 40, 41, 42, 47, 49, 54, 55, 57, 58, 60, 63, 64, 65, 68, 70, 71, 73, 74, 79, 81, 86, 87, 88, 89, 90, 92, 95, 96, 97, 100, 102, 103, 104, 105, 106, 111, 112, 113, 118, 119, 121, 122, 124, 127, 129
Offset: 1

Views

Author

Peter Munn, Feb 13 2024

Keywords

Comments

Construction by subgroup generation: (Start)
The set of numbers congruent to 1 modulo 8 (A017077) contains all the odd squares and generates a subgroup of the positive rational numbers (under multiplication) that contains no additional integers. The subgroup has an infinite number of cosets. The rest of the construction process extends the subgroup, reducing the number of cosets to 2, by choosing additional generators that are semiprime.
First we extend the subgroup to include all nonzero integer squares. As we already have the odd squares, we need only add 4, the square of the smallest prime, as a generator. The extended subgroup has only 8 cosets and its integer members are listed in A234000. To achieve a subgroup with 2 cosets we now add squarefree semiprime generators. The 2 smallest, 6 and 10, suffice.
The resulting subgroup has this sequence's terms as its integer members.
(End)
The equivalent process starting with numbers congruent to 1 modulo 3 (or 1 modulo 6) produces A189715. If we take its intersection with this sequence we get A370268, which starts with the first 72 nonzero numbers of the form x^2 + 6y^2 (see A002481). Similarly, if we start with numbers congruent to 1 modulo 5 (or 1 modulo 10) and take the resulting set's intersection with this sequence we get a set starting with the first 32 nonzero numbers of the form x^2 - 10y^2 (see A242664).
The construction process leads to a number of properties:
- The sequence is closed under multiplication and all integer ratios between terms are in the sequence.
- The sequence and its complement have the property that the terms of one can be generated by halving the even terms of the other. Each has asymptotic density 1/2.
Numbers whose squarefree part is congruent to {1,7} mod 8 or {6,10} mod 16.

Examples

			7 is prime, so 7 is its only prime factor, which has the form 8m-1. So 7 has an even number (zero) of prime factors not of the form 8m+-1, and therefore is in the sequence. In terms of the subgroup generators described at the start of the comments, (13*8+1) * 4 / (6*10) = 105 * 4/60 = 7.
110 = 2 * 5 * 11, so it has 3 prime factors and all 3 do not have the form 8m+-1. 3 is odd, so 110 is not in the sequence.
		

Crossrefs

Disjoint union of A004215, A055042, A055043 and A234000.
See the comments for the relationships with A002481, A017077, A189715, A242664, A370268.
Cf. A042999 (primes), A059897.

Programs

  • PARI
    isok(k) = {c = core(k); c%8 == 1 || c%8 == 7 || c%16 == 6 || c%16 == 10}
    
  • Python
    def A370267(n):
        def f(x): return n+x-sum(((y:=x>>(i<<1))-7>>3)+(y-1>>3)+2 for i in range((x.bit_length()>>1)+1))-sum(((z:=x>>(i<<1)+1)-5>>3)+(z-3>>3)+2 for i in range(x.bit_length()-1>>1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Mar 19 2025

Formula

{a(n) : n >= 1} = {A059897(i,j) : i in A234000, j in {1, 6, 10, 15}}.

A017087 a(n) = (8*n + 1)^11.

Original entry on oeis.org

1, 31381059609, 34271896307633, 2384185791015625, 50542106513726817, 550329031716248441, 3909821048582988049, 20635899893042801193, 87507831740087890625, 313726685568359708377, 984770902183611232881
Offset: 0

Views

Author

Keywords

Comments

Composition of A008455(n) and A017077(n). - Wesley Ivan Hurt, Jul 17 2025

Crossrefs

Programs

  • Magma
    [(8*n+1)^11: n in [0..20]]; // Vincenzo Librandi, Jul 11 2011
    
  • Mathematica
    (8*Range[0,10]+1)^11 (* or *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,31381059609,34271896307633,2384185791015625,50542106513726817,550329031716248441,3909821048582988049,20635899893042801193,87507831740087890625,313726685568359708377,984770902183611232881,2775173073766990340489},20] (* Harvey P. Dale, Sep 08 2017 *)
    CoefficientList[Series[(1 + 31381059597*x + 33895323592391*x^2 + 1974994185258003*x^3 + 24186918344729610*x^4 + 93655732195384290*x^5 + 134070558743608110*x^6 + 73557591075608934*x^7 + 14545208676272997*x^8 + 849143191166465*x^9 + 8626027938459*x^10 + 1977326743*x^11)/(-1 + x)^12, {x, 0, 15}], x] (* Wesley Ivan Hurt, Jul 17 2025 *)
  • PARI
    a(n)=(8*n+1)^11 \\ Charles R Greathouse IV, Aug 11 2014

Formula

From Wesley Ivan Hurt, Jul 17 2025: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: (1 + 31381059597*x + 33895323592391*x^2 + 1974994185258003*x^3 +24186918344729610*x^4 + 93655732195384290*x^5 + 134070558743608110*x^6 + 73557591075608934*x^7 + 14545208676272997*x^8 + 849143191166465*x^9 + 8626027938459*x^10 + 1977326743*x^11)/(-1 + x)^12.
a(n) = A008455(A017077(n)). (End)

A047400 Numbers that are congruent to {1, 3, 6} mod 8.

Original entry on oeis.org

1, 3, 6, 9, 11, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 41, 43, 46, 49, 51, 54, 57, 59, 62, 65, 67, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 97, 99, 102, 105, 107, 110, 113, 115, 118, 121, 123, 126, 129, 131, 134, 137, 139, 142, 145, 147, 150, 153, 155, 158
Offset: 1

Views

Author

Keywords

Comments

Union of A017077, A017101 and A017137. - R. J. Mathar, Apr 14 2008

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | n mod 8 in [1, 3, 6]]; // Vincenzo Librandi, Mar 27 2011
  • Maple
    A047400:=n->2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9: seq(A047400(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{1, 3, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
  • PARI
    a(n) = {x=8*floor((n-1)/3);if(n%3==1,x=x+1);if(n%3==2,x=x+3);if(n%3==0,x=x+6);x} \\ Michael B. Porter, Oct 02 2009
    

Formula

a(n) = A004773(n-1) + A004773(n). - Gary W. Adamson, Sep 13 2007
G.f.: x*(1+x)*(2x^2+x+1)/((-1+x)^2*(x^2+x+1)). a(n) = a(n-3)+8 for n>3. - R. J. Mathar, Apr 14 2008
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-9+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-5, a(3k-2) = 8k-7. (End)

A047594 Numbers that are congruent to {0, 2, 3, 4, 5, 6, 7} mod 8.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76
Offset: 1

Views

Author

Keywords

Comments

A004774 without the 1. - R. J. Mathar, Oct 18 2008
Complement of A017077. - Michel Marcus, Sep 11 2015

Crossrefs

Programs

Formula

From R. J. Mathar, Mar 03 2009: (Start)
G.f.: x^2*(2+x+x^2+x^3+x^4+x^5+x^6)/((1-x)^2*(x^6+x^5+x^4+x^3+x^2+x+1)).
a(n) = a(n-7) + 8 for n>7. (End)
a(n) = n + floor((n-2)/7). - Wesley Ivan Hurt, Sep 11 2015
From Wesley Ivan Hurt, Jul 21 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
a(n) = (56*n - 35 + (n mod 7) + ((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) - 6*((n+5) mod 7) + ((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-3, a(7k-3) = 8k-4, a(7k-4) = 8k-5, a(7k-5) = 8k-6, a(7k-6) = 8k-8. (End)

A137190 Lucky numbers (A000959) which are congruent to 1 mod 8.

Original entry on oeis.org

1, 9, 25, 33, 49, 73, 105, 129, 169, 193, 201, 241, 273, 289, 297, 321, 361, 385, 393, 409, 433, 489, 529, 537, 553, 577, 601, 673, 729, 745, 769, 777, 801, 841, 873, 897, 937, 961, 993, 1009, 1041, 1057, 1105, 1201, 1209, 1233, 1249, 1281, 1329, 1369, 1401, 1417, 1441
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A017077.

A138393 Numbers of form 8k+1 which are not squares.

Original entry on oeis.org

17, 33, 41, 57, 65, 73, 89, 97, 105, 113, 129, 137, 145, 153, 161, 177, 185, 193, 201, 209, 217, 233, 241, 249, 257, 265, 273, 281, 297, 305, 313, 321, 329, 337, 345, 353, 369, 377, 385, 393, 401, 409, 417, 425, 433, 449, 457, 465, 473, 481, 489, 497, 505
Offset: 1

Views

Author

Artur Jasinski, Mar 18 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Sqrt[8k + 1] == Floor[Sqrt[8k + 1]],[null],AppendTo[a, 8k + 1]], {k, 0, 100}]; a
    Select[8*Range[80]+1,!IntegerQ[Sqrt[#]]&] (* Harvey P. Dale, May 03 2018 *)

A165220 Numbers n such that 8*n+1 is a cube.

Original entry on oeis.org

0, 91, 614, 1953, 4492, 8615, 14706, 23149, 34328, 48627, 66430, 88121, 114084, 144703, 180362, 221445, 268336, 321419, 381078, 447697, 521660, 603351, 693154, 791453, 898632, 1015075, 1141166, 1277289, 1423828, 1581167, 1749690, 1929781
Offset: 0

Views

Author

Vincenzo Librandi, Sep 08 2009

Keywords

Comments

For every even n, n^4+(n/2)^3 is a cube.
In effect, a(n) = n*(24*n+3+64*n^2) and 8*a(n)+1 = (8*n+1)^3. [R. J. Mathar, Oct 18 2010]

Crossrefs

Cf. A017077.

Programs

  • Magma
    I:=[0, 91, 614, 1953]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 06 2013
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {0, 91, 614, 1953}, 100] (* Vincenzo Librandi, Apr 06 2013 *)

Formula

G.f.: x*(91+250*x+43*x^2)/(1-x)^4. [Colin Barker, Jun 15 2012]

Extensions

Typo corrected by Zak Seidov, Sep 14 2009

A168390 a(n) = 1 + 8*floor(n/2).

Original entry on oeis.org

1, 9, 9, 17, 17, 25, 25, 33, 33, 41, 41, 49, 49, 57, 57, 65, 65, 73, 73, 81, 81, 89, 89, 97, 97, 105, 105, 113, 113, 121, 121, 129, 129, 137, 137, 145, 145, 153, 153, 161, 161, 169, 169, 177, 177, 185, 185, 193, 193, 201, 201, 209, 209, 217, 217, 225, 225, 233, 233
Offset: 1

Views

Author

Vincenzo Librandi, Nov 24 2009

Keywords

Crossrefs

Programs

  • Magma
    [1+8*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 18 2013
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==8n-a[n-1]-6},a,{n,60}] (* or *) LinearRecurrence[{1,1,-1},{1,9,9},60] (* or *) With[{c=Table[8n+1,{n,0,40}]},Rest[Riffle[c,c]]] (* Harvey P. Dale, Jul 28 2012 *)
    Table[1 + 8 Floor[n/2], {n, 60}] (* Bruno Berselli, Sep 18 2013 *)
    CoefficientList[Series[(1 + 8 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 18 2013 *)

Formula

a(n) = 8*n - a(n-1) - 6, with n>1, a(1)=1.
a(1)=1, a(2)=9, a(3)=9; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Jul 28 2012
G.f.: x*(1 + 8*x - x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 18 2013
a(n) = A168381(n) - 1 = A168378(n) - 2. - Bruno Berselli, Sep 18 2013
E.g.f.: (2 - exp(x) + (4*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 19 2016

Extensions

New definition by Vincenzo Librandi, Sep 18 2013

A185379 Product of exactly three distinct primes congruent to 1 mod 8 (A007519).

Original entry on oeis.org

50881, 62033, 67609, 78761, 95489, 110449, 120377, 134521, 140233, 146761, 162401, 167977, 170017, 170969, 179129, 186337, 195857, 207281, 218161, 225913, 234889, 239513, 246041, 263177, 266377, 279497, 285073, 289153, 290321, 292009, 299081, 301801, 312953
Offset: 1

Views

Author

Jonathan Vos Post, Feb 20 2011

Keywords

Comments

Subset of numbers that are divisible by exactly 3 primes (counted with multiplicity), also known as triprimes or 3-almost primes, A014612. Subset of {d = p_1 * p_2 * ... * p_m where p_i == 1 (mod 8), 1 <= i <= m are distinct primes} as occurs in Wei, p.2.

Examples

			a(12) = 170017 = 17 * 73 * 137 = A007519(1) * A007519(3) * A007519(7).
		

Crossrefs

Programs

  • Mathematica
    p = Select[Prime[Range[100]], Mod[#, 8] == 1 &]; Sort[Reap[Do[n = p[[i]] p[[j]] p[[k]]; If[n <= p[[1]] p[[2]] p[[-1]], Sow[n]], {i, 2, Length[p]}, {j, i - 1}, {k, j - 1}]][[2, 1]]]
  • PARI
    list(lim)=my(v=List(),u=v,t); forprime(p=2,lim\697, if(p%8==1, listput(u,p))); for(i=1,#u-2, for(j=i+1, #u-1, if(u[i]*u[j]*u[j+1]>lim, break); for(k=j+1,#u, t=u[i]*u[j]*u[k]; if(t>lim, break); listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Formula

{A007519(i) * A007519(j) * A007519(k) for i < j < k}. {A000040(i) * A000040(j) * A000040(k) for i < j < k, and A000040(i) in A017077 and A000040(j) in A017077 and A000040(k) in A017077}.
Previous Showing 51-60 of 66 results. Next