cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A343099 Sums of 3 distinct odd squares.

Original entry on oeis.org

35, 59, 75, 83, 91, 107, 115, 131, 139, 147, 155, 171, 179, 195, 203, 211, 219, 227, 235, 243, 251, 259, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427, 435, 443, 451, 459, 467, 475, 483, 491, 499, 507, 515, 523, 531
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 05 2021

Keywords

Comments

From Robert Israel, Apr 06 2021: (Start)
All terms == 3 (mod 8).
Conjecture: contains all numbers == 3 (mod 8) except 3, 11, 19, 27, 43, 51, 67, 99, 123, 163, 187, 267, 627. (End)

Examples

			107 is in the sequence since 107 = 1^2 + 5^2 + 9^2.
		

Crossrefs

Subsequence of A017101.
Cf. A004432, A016754 (odd squares).

Programs

  • Maple
    N:= 10^4: # for terms <= N
    S:= {seq(seq(seq(x^2+y^2+z^2, z = 1 .. min(y-2, floor(sqrt(N-x^2-y^2))), 2),y = 1 .. min(x-2, floor(sqrt(N-x^2))), 2), x = 1 .. floor(sqrt(N)),2)}:
    sort(convert(S,list)); # Robert Israel, Apr 05 2021

A350052 Third part of the trisection of A017077: a(n) = 17 + 24*n.

Original entry on oeis.org

17, 41, 65, 89, 113, 137, 161, 185, 209, 233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073
Offset: 0

Views

Author

Wolfdieter Lang, Dec 11 2021

Keywords

Comments

The trisection of A017077 = {1 + 8*k}A103214%20=%20%7B1%20+%2024*n%7D">{k>=0} gives A103214 = {1 + 24*n}{n>=0}, 3*A017101 = {3*(3 + 8*n)}{n >= 0} and {a(n)}{n>=0}. These three sequences are congruent to 1 modulo 8 and to 1, 3, and 5 modulo 6, respectively.

Crossrefs

Programs

Formula

a(n) = 17 + 24*n = 17 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -7, a(0) = 17.
G.f.: (17 + 7*x)/(1-x)^2.
E.g.f.: (17 + 24*x)*exp(x).

A361226 Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0

Views

Author

Paul Curtz, Mar 05 2023

Keywords

Comments

The main diagonal is A002414.
The first upper diagonal is A160378(n+1).
The antidiagonals sums are A034827(n+2).
b(n) = (A034827(n+3) = 0, 2, 10, 30, 70, ...) - (A002414(n) = 0, 1, 9, 30, 70, ...) = 0, 1, 1, 0, 0, 5, 21, 56, ... .
b(n+2) = A299120(n). b(n+4) = A033275(n). b(n+4) - b(n) = A002492(n).

Examples

			The rows are
  0, 0,  1,  3,  6,  10,  15,  21, ...   = A161680
  0, 1,  5, 12, 22,  35,  51,  70, ...   = A000326
  0, 2,  9, 21, 38,  60,  87, 119, ...   = A005476
  0, 3, 13, 30, 54,  85, 123, 168, ...   = A022264
  0, 4, 17, 39, 70, 110, 159, 217, ...   = A022266
  ... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
  0
  0   0
  0   1   1
  0   2   5   3
  0   3   9  12   6
  0   4  13  21  22  10
  0   5  17  30  38  35  15
  ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
  • PARI
    a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
    
  • Python
    # Seen as a triangle:
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        r = Trow(n - 1)
        return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
    for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023

Formula

Take successively sequences n*(n-1)/2, n*(3*n-1)/2, n*(5*n-1)/2, ... listed in the EXAMPLE section.
G.f.: y*(x + y)/((1 - y)^3*(1 - x)^2). - Stefano Spezia, Mar 06 2023
E.g.f.: exp(x+y)*y*(2*x + y + 2*x*y)/2. - Stefano Spezia, Feb 21 2024

A367882 Table T(n, k) read by downward antidiagonals: T(n, k) = floor((4*T(n, k-1)+3)/3) starting with T(n, 0) = 4*n.

Original entry on oeis.org

0, 1, 4, 2, 6, 8, 3, 9, 11, 12, 5, 13, 15, 17, 16, 7, 18, 21, 23, 22, 20, 10, 25, 29, 31, 30, 27, 24, 14, 34, 39, 42, 41, 37, 33, 28, 19, 46, 53, 57, 55, 50, 45, 38, 32, 26, 62, 71, 77, 74, 67, 61, 51, 43, 36, 35, 83, 95, 103, 99, 90, 82, 69, 58, 49, 40
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2023

Keywords

Comments

Permutation of nonnegative numbers.
Let b(m) be the row n in which m appears, this sequence would start: 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3,... . If we would remove in this sequence the first appearance of each number then we would obtain again the same sequence, hence b(m) is a fractal sequence. - Thomas Scheuerle, Dec 04 2023

Examples

			Square array starts:
  0,   1,   2,   3,   5,   7, ...
  4,   6,   9,  13,  18,  25, ...
  8,  11,  15,  21,  29,  39, ...
 12,  17,  23,  31,  42,  57, ...
 16,  22,  30,  41,  55,  74, ...
 ...
		

Crossrefs

Programs

Formula

T(n, 0) = 4*n = A008586(n).
T(3*n, 1) = 16*n + 1 = A158057(n).
T(3*n+1, 1) = 16*n + 6 = 2*A017101(n).
T(3*n+2, 1) = 16*n + 11 = A106839(n).
T(3^k+n, k) = 4^(k+1) + T(n, k). - Thomas Scheuerle, Dec 04 2023

Extensions

More terms from Paolo Xausa, Apr 03 2024

A047473 Numbers that are congruent to {2, 3} mod 8.

Original entry on oeis.org

2, 3, 10, 11, 18, 19, 26, 27, 34, 35, 42, 43, 50, 51, 58, 59, 66, 67, 74, 75, 82, 83, 90, 91, 98, 99, 106, 107, 114, 115, 122, 123, 130, 131, 138, 139, 146, 147, 154, 155, 162, 163, 170, 171, 178, 179, 186, 187, 194, 195, 202, 203, 210, 211, 218, 219, 226, 227, 234
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k and k+2 have the same digital binary sum. - Benoit Cloitre, Dec 01 2002
Also, numbers k such that k*(3*k + 1)/8 + 1/4 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

  • Mathematica
    Flatten[# + {2,3} &/@ (8 Range[0, 30])] (* or *) LinearRecurrence[{1, 1, -1}, {2, 3, 10}, 60] (* Harvey P. Dale, Sep 28 2012 *)

Formula

a(n) = 8*n - a(n-1) - 11 for n>1, a(1)=2. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 7/2 - 3*(-1)^n/2.
G.f.: x*(2 + x + 5*x^2)/((1 + x)*(1 - x)^2). (End)
a(1)=2, a(2)=3, a(3)=10; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Sep 28 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/16 + sqrt(2)*log(sqrt(2)+1)/8 - log(2)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A305553 Numbers that are not the sum of 2 squares and a 4th power.

Original entry on oeis.org

7, 12, 15, 22, 23, 28, 31, 39, 43, 44, 47, 55, 60, 63, 67, 70, 71, 76, 78, 79, 87, 92, 93, 95, 103, 108, 111, 112, 119, 124, 127, 135, 140, 143, 151, 156, 159, 167, 168, 172, 175, 177, 183, 184, 188, 191, 192, 199, 204, 207, 214, 215, 220, 223, 231, 236
Offset: 1

Views

Author

XU Pingya, Jun 20 2018

Keywords

Comments

Numbers of the form 4*A017101(k) are terms of this sequence.
m is a term iff 16m is also.

Crossrefs

Subsequence of A000037, A140823 and A022544.
A004215 and A214891 are subsequences.

Programs

  • Mathematica
    n=239;
    t=Union@Flatten@Table[x^2+y^2+z^4, {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,0,(n-x^2-y^2)^(1/4)}];
    Complement[Range[0,n], t]

A306970 Numbers of the form 8*k+3 not represented by 2*x^2+4*y^2+4*y*z+9*z^2.

Original entry on oeis.org

3, 43, 163, 907
Offset: 1

Views

Author

N. J. A. Sloane, Mar 26 2019

Keywords

Comments

There may be no further terms.

Crossrefs

Cf. A017101 (numbers of the form 8*k+3).
Previous Showing 31-37 of 37 results.