A343099
Sums of 3 distinct odd squares.
Original entry on oeis.org
35, 59, 75, 83, 91, 107, 115, 131, 139, 147, 155, 171, 179, 195, 203, 211, 219, 227, 235, 243, 251, 259, 275, 283, 291, 299, 307, 315, 323, 331, 339, 347, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427, 435, 443, 451, 459, 467, 475, 483, 491, 499, 507, 515, 523, 531
Offset: 1
107 is in the sequence since 107 = 1^2 + 5^2 + 9^2.
-
N:= 10^4: # for terms <= N
S:= {seq(seq(seq(x^2+y^2+z^2, z = 1 .. min(y-2, floor(sqrt(N-x^2-y^2))), 2),y = 1 .. min(x-2, floor(sqrt(N-x^2))), 2), x = 1 .. floor(sqrt(N)),2)}:
sort(convert(S,list)); # Robert Israel, Apr 05 2021
A350052
Third part of the trisection of A017077: a(n) = 17 + 24*n.
Original entry on oeis.org
17, 41, 65, 89, 113, 137, 161, 185, 209, 233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073
Offset: 0
A361226
Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0
The rows are
0, 0, 1, 3, 6, 10, 15, 21, ... = A161680
0, 1, 5, 12, 22, 35, 51, 70, ... = A000326
0, 2, 9, 21, 38, 60, 87, 119, ... = A005476
0, 3, 13, 30, 54, 85, 123, 168, ... = A022264
0, 4, 17, 39, 70, 110, 159, 217, ... = A022266
... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
0
0 0
0 1 1
0 2 5 3
0 3 9 12 6
0 4 13 21 22 10
0 5 17 30 38 35 15
... .
Cf.
A000004,
A000290,
A000326,
A001477,
A002414,
A005476,
A016777,
A016813,
A016873,
A017017,
A017101,
A017197,
A017581,
A022264,
A022266,
A026741,
A034827,
A160378,
A161680,
A360962.
-
T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
-
a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
-
# Seen as a triangle:
from functools import cache
@cache
def Trow(n: int) -> list[int]:
if n == 0: return [0]
r = Trow(n - 1)
return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023
A367882
Table T(n, k) read by downward antidiagonals: T(n, k) = floor((4*T(n, k-1)+3)/3) starting with T(n, 0) = 4*n.
Original entry on oeis.org
0, 1, 4, 2, 6, 8, 3, 9, 11, 12, 5, 13, 15, 17, 16, 7, 18, 21, 23, 22, 20, 10, 25, 29, 31, 30, 27, 24, 14, 34, 39, 42, 41, 37, 33, 28, 19, 46, 53, 57, 55, 50, 45, 38, 32, 26, 62, 71, 77, 74, 67, 61, 51, 43, 36, 35, 83, 95, 103, 99, 90, 82, 69, 58, 49, 40
Offset: 0
Square array starts:
0, 1, 2, 3, 5, 7, ...
4, 6, 9, 13, 18, 25, ...
8, 11, 15, 21, 29, 39, ...
12, 17, 23, 31, 42, 57, ...
16, 22, 30, 41, 55, 74, ...
...
-
A367882[n_, k_] := A367882[n, k] = If[k == 0, 4*n, Floor[4*A367882[n, k-1]/3 + 1]];
Table[A367882[k, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Apr 03 2024 *)
-
T(n, k) = if(k==0, 4*n, (4*T(n, k-1)+3)\3) \\ Thomas Scheuerle, Dec 04 2023
A047473
Numbers that are congruent to {2, 3} mod 8.
Original entry on oeis.org
2, 3, 10, 11, 18, 19, 26, 27, 34, 35, 42, 43, 50, 51, 58, 59, 66, 67, 74, 75, 82, 83, 90, 91, 98, 99, 106, 107, 114, 115, 122, 123, 130, 131, 138, 139, 146, 147, 154, 155, 162, 163, 170, 171, 178, 179, 186, 187, 194, 195, 202, 203, 210, 211, 218, 219, 226, 227, 234
Offset: 1
-
Flatten[# + {2,3} &/@ (8 Range[0, 30])] (* or *) LinearRecurrence[{1, 1, -1}, {2, 3, 10}, 60] (* Harvey P. Dale, Sep 28 2012 *)
A305553
Numbers that are not the sum of 2 squares and a 4th power.
Original entry on oeis.org
7, 12, 15, 22, 23, 28, 31, 39, 43, 44, 47, 55, 60, 63, 67, 70, 71, 76, 78, 79, 87, 92, 93, 95, 103, 108, 111, 112, 119, 124, 127, 135, 140, 143, 151, 156, 159, 167, 168, 172, 175, 177, 183, 184, 188, 191, 192, 199, 204, 207, 214, 215, 220, 223, 231, 236
Offset: 1
-
n=239;
t=Union@Flatten@Table[x^2+y^2+z^4, {x,0,n^(1/2)}, {y,x,(n-x^2)^(1/2)}, {z,0,(n-x^2-y^2)^(1/4)}];
Complement[Range[0,n], t]
A306970
Numbers of the form 8*k+3 not represented by 2*x^2+4*y^2+4*y*z+9*z^2.
Original entry on oeis.org
3, 43, 163, 907
Offset: 1
Cf.
A017101 (numbers of the form 8*k+3).
Comments