cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A047608 Numbers that are congruent to {4, 5} mod 8.

Original entry on oeis.org

4, 5, 12, 13, 20, 21, 28, 29, 36, 37, 44, 45, 52, 53, 60, 61, 68, 69, 76, 77, 84, 85, 92, 93, 100, 101, 108, 109, 116, 117, 124, 125, 132, 133, 140, 141, 148, 149, 156, 157, 164, 165, 172, 173, 180, 181, 188, 189, 196, 197, 204, 205, 212, 213, 220, 221, 228, 229
Offset: 1

Views

Author

Keywords

Crossrefs

Union of A017113 and A004770.

Programs

  • Mathematica
    Select[Range[230], MemberQ[{4, 5}, Mod[#, 8]] &] (* Amiram Eldar, Dec 19 2021 *)
  • PARI
    a(n) = 4*n - 3*(1 + (-1)^n)/2 \\ David Lovler, Aug 20 2022

Formula

G.f.: x*(4+x+3*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
a(n) = 4n - 3*(1 + (-1)^n)/2 or a(n) = 4n - 3*((n-1) mod 2). - Heinz Ebert, Jul 12 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 - log(2)/4 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 19 2021
E.g.f.: 3 + ((8*x - 3)*exp(x) - 3*exp(-x))/2. - David Lovler, Aug 20 2022

A047610 Positive integers that are congruent to {1, 4, 5} mod 8.

Original entry on oeis.org

1, 4, 5, 9, 12, 13, 17, 20, 21, 25, 28, 29, 33, 36, 37, 41, 44, 45, 49, 52, 53, 57, 60, 61, 65, 68, 69, 73, 76, 77, 81, 84, 85, 89, 92, 93, 97, 100, 101, 105, 108, 109, 113, 116, 117, 121, 124, 125, 129, 132, 133, 137, 140, 141, 145, 148, 149, 153, 156, 157
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..160] | n mod 8 in [1,4,5]]; // Vincenzo Librandi, May 07 2015
  • Maple
    seq(op([8*i+1,8*i+4,8*i+5]),i=0..100); # Robert Israel, May 04 2015
  • Mathematica
    a[1] := 1; a[2] := 4; a[3] := 5; a[n_] := a[n - 3] + 8; Table[a[n], {n, 10}] (* L. Edson Jeffery, May 04 2015 *)
    Select[Range[0, 200], MemberQ[{1, 4, 5}, Mod[#, 8]] &] (* Vincenzo Librandi, May 07 2015 *)
    LinearRecurrence[{1,0,1,-1},{1,4,5,9},60] (* Harvey P. Dale, Nov 21 2015 *)
  • PARI
    is(n)=n%8==1||n%8>>1==2 \\ Charles R Greathouse IV, May 04 2015
    

Formula

a(n) = a(n-3) + 8, n > 3, with initial conditions a(1) = 1, a(2) = 4, a(3) = 5. - L. Edson Jeffery, May 04 2015
G.f.: x*(1+3*x)*(1+x^2)/(1-x-x^3+x^4). - Robert Israel, May 04 2015
A047610 = A016813 union A017113\{0}. - L. Edson Jeffery, May 06 2015

A062876 Numbers of lattice points corresponding to incrementally largest circle radii in A062875.

Original entry on oeis.org

4, 12, 20, 28, 44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964
Offset: 1

Views

Author

Keywords

Comments

For n = 1 and n >= 3, a(n) is the smallest nonsquarefree number divisible by prime(n). - David James Sycamore, Jun 15 2024

Crossrefs

Programs

Formula

a(n) = A017113(A111333(n)-1) = 8*A111333(n) - 4.
For n >= 2 a(n) = 4*A000040(n) (a term in A013929). - David James Sycamore, Jun 15 2024

Extensions

Edited and extended by Ray Chandler, Jan 05 2012

A168398 a(n) = 4 + 8*floor((n-1)/2).

Original entry on oeis.org

4, 4, 12, 12, 20, 20, 28, 28, 36, 36, 44, 44, 52, 52, 60, 60, 68, 68, 76, 76, 84, 84, 92, 92, 100, 100, 108, 108, 116, 116, 124, 124, 132, 132, 140, 140, 148, 148, 156, 156, 164, 164, 172, 172, 180, 180, 188, 188, 196, 196, 204, 204, 212, 212, 220, 220, 228, 228
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Programs

  • Magma
    [4+8*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 18 2013
  • Mathematica
    Table[4 + 8*Floor[(n - 1)/2], {n, 60}] (* Vincenzo Librandi, Sep 18 2013 *)
    LinearRecurrence[{1,1,-1},{4,4,12},60] (* or *) With[{r=NestList[ #+8&,4,30]},Riffle[r,r]] (* Harvey P. Dale, Oct 18 2021 *)

Formula

a(n) = 8*n - a(n-1) - 8, with n>1, a(1)=4.
G.f.: 4*x*(1 + x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 18 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 18 2013
a(n) = 4 * A109613(n-1). - Bruno Berselli, Sep 18 2013
E.g.f.: 4*(1 + (x - 1)*cosh(x) + x*sinh(x)). - G. C. Greubel, Jul 20 2016

Extensions

New definition by Vincenzo Librandi, Sep 18 2013

A346376 a(n) = n^4 + 14*n^3 + 63*n^2 + 98*n + 28.

Original entry on oeis.org

28, 204, 604, 1348, 2580, 4468, 7204, 11004, 16108, 22780, 31308, 42004, 55204, 71268, 90580, 113548, 140604, 172204, 208828, 250980, 299188, 354004, 416004, 485788, 563980, 651228, 748204, 855604, 974148, 1104580, 1247668, 1404204, 1575004, 1760908, 1962780
Offset: 0

Views

Author

Lamine Ngom, Jul 14 2021

Keywords

Comments

The product of eight consecutive positive integers can always be expressed as the difference of two squares: x^2 - y^2.
This sequence gives the x-values for each product. The y-values are A017113(n+4).
a(n) is always divisible by 4. In addition, we have (a(n)+16)/4 belongs to A028387.
Are 4 and 8 the unique values of k such that the product of k consecutive integers is always distant to upper square by a square?

Crossrefs

Formula

a(n) = A239035(n)^2 - A017113(n+4)^2.
a(n) = 4*(A028387(A046691(n+2)) - 4).
G.f.: 4*(7 + 16*x - 34*x^2 + 22*x^3 - 5*x^4)/(1 - x)^5. - Stefano Spezia, Jul 14 2021

A370596 Numbers k such that A007814(k) is a prime number.

Original entry on oeis.org

4, 8, 12, 20, 24, 28, 32, 36, 40, 44, 52, 56, 60, 68, 72, 76, 84, 88, 92, 96, 100, 104, 108, 116, 120, 124, 128, 132, 136, 140, 148, 152, 156, 160, 164, 168, 172, 180, 184, 188, 196, 200, 204, 212, 216, 220, 224, 228, 232, 236, 244, 248, 252, 260, 264, 268, 276
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2024

Keywords

Comments

Numbers whose binary representation has a prime number of trailing 0's.
a(n)-1 is the sequence of numbers whose binary representation has a prime number of trailing 1's.
Numbers of the form (2^(p+1))*k + 2^p = 2^p * (2*k + 1), where p is prime and k >= 0.
All the terms are divisible by 4.
The asymptotic density of this sequence is Sum_{p prime} 1/2^(p+1) = 0.20734125492555583012... = A051006 / 2.

Crossrefs

Subsequences: A017113, A051062.

Programs

  • Mathematica
    Select[Range[300], PrimeQ[IntegerExponent[#, 2]] &]
  • PARI
    is(n) = isprime(valuation(n, 2));

A017115 a(n) = (8*n + 4)^3.

Original entry on oeis.org

64, 1728, 8000, 21952, 46656, 85184, 140608, 216000, 314432, 438976, 592704, 778688, 1000000, 1259712, 1560896, 1906624, 2299968, 2744000, 3241792, 3796416, 4410944, 5088448, 5832000, 6644672, 7529536, 8489664, 9528128, 10648000, 11852352, 13144256, 14526784, 16003008
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^3: n in [0..35] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1},{64, 1728, 8000, 21952},24] (* Ray Chandler, Aug 04 2015 *)

Formula

G.f.: 64*(1+x)*(x^2 + 22*x + 1)/(x-1)^4. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^3.
a(n) = 2^3*A016827(n) = 2^6*A016755(n).
Sum_{n>=0} 1/a(n) = 7*zeta(3)/512.
Sum_{n>=0} (-1)^n/a(n) = Pi^3/2048. (End)
E.g.f.: 64*exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). - Stefano Spezia, May 27 2025

A017116 a(n) = (8*n + 4)^4.

Original entry on oeis.org

256, 20736, 160000, 614656, 1679616, 3748096, 7311616, 12960000, 21381376, 33362176, 49787136, 71639296, 100000000, 136048896, 181063936, 236421376, 303595776, 384160000, 479785216, 592240896, 723394816, 875213056, 1049760000, 1249198336, 1475789056, 1731891456
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^4: n in [0..35] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    (8*Range[0,20]+4)^4 (* or *) LinearRecurrence[{5,-10,10,-5,1},{256,20736,160000,614656,1679616},20] (* Harvey P. Dale, Aug 05 2019 *)

Formula

G.f.: -256*(1 + 76*x + 230*x^2 + 76*x^3 + x^4)/(x-1)^5. - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^4.
a(n) = 2^4*A016828(n) = 2^8*A016756(n).
Sum_{n>=0} 1/a(n) = Pi^4/24576. (End)

A017117 a(n) = (8*n + 4)^5.

Original entry on oeis.org

1024, 248832, 3200000, 17210368, 60466176, 164916224, 380204032, 777600000, 1453933568, 2535525376, 4182119424, 6590815232, 10000000000, 14693280768, 21003416576, 29316250624, 40074642432, 53782400000, 71008211968, 92389579776, 118636749824, 150536645632, 188956800000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^5: n in [0..30] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    (8*Range[0,20]+4)^5 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1024,248832,3200000,17210368,60466176,164916224},20] (* Harvey P. Dale, Nov 24 2012 *)

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6); a(0)=1024, a(1)=248832, a(2)=3200000, a(3)=17210368, a(4)=60466176, a(5)=164916224. - Harvey P. Dale, Nov 24 2012
G.f.: 1024*(1+x)*(x^4 + 236*x^3 + 1446*x^2 + 236*x + 1) / (x-1)^6. - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^5.
a(n) = 2^5*A016829(n) = 2^10*A016757(n).
Sum_{n>=0} 1/a(n) = 31*zeta(5)/32768.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi^5/1572864. (End)

A017118 a(n) = (8*n + 4)^6.

Original entry on oeis.org

4096, 2985984, 64000000, 481890304, 2176782336, 7256313856, 19770609664, 46656000000, 98867482624, 192699928576, 351298031616, 606355001344, 1000000000000, 1586874322944, 2436396322816, 3635215077376, 5289852801024, 7529536000000, 10509215371264, 14412774445056
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^6: n in [0..20] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    (8*Range[0,30]+4)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{4096,2985984,64000000,481890304,2176782336,7256313856,19770609664},30] (* Harvey P. Dale, Jan 07 2016 *)

Formula

G.f.: -4096*(1 + 722*x + 10543*x^2 + 23548*x^3 + 10543*x^4 + 722*x^5 + x^6)/(x-1)^7. - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^6.
a(n) = 2^6*A016830(n) = 2^12*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/3932160. (End)
Previous Showing 41-50 of 65 results. Next