cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-69 of 69 results.

A143685 Pascal-(1,9,1) array.

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 21, 21, 1, 1, 31, 141, 31, 1, 1, 41, 361, 361, 41, 1, 1, 51, 681, 1991, 681, 51, 1, 1, 61, 1101, 5921, 5921, 1101, 61, 1, 1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1, 1, 81, 2241, 24681, 96201, 96201, 24681, 2241, 81, 1, 1, 91, 2961, 41511, 239241, 460251, 239241, 41511, 2961, 91, 1
Offset: 0

Views

Author

Paul Barry, Aug 28 2008

Keywords

Examples

			Square array begins as:
  1,  1,    1,     1,      1,       1,        1, ... A000012;
  1, 11,   21,    31,     41,      51,       61, ... A017281;
  1, 21,  141,   361,    681,    1101,     1621, ...
  1, 31,  361,  1991,   5921,   13151,    24681, ...
  1, 41,  681,  5921,  29761,   96201,   239241, ...
  1, 51, 1101, 13151,  96201,  460251,  1565301, ...
  1, 61, 1621, 24681, 239241, 1565301,  7272861, ...
Antidiagonal triangle begins as:
  1;
  1,  1;
  1, 11,    1;
  1, 21,   21,     1;
  1, 31,  141,    31,     1;
  1, 41,  361,   361,    41,     1;
  1, 51,  681,  1991,   681,    51,    1;
  1, 61, 1101,  5921,  5921,  1101,   61,  1;
  1, 71, 1621, 13151, 29761, 13151, 1621, 71, 1;
		

Crossrefs

Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8), this sequence (m = 9).

Programs

  • Magma
    A143685:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A143685(n,k,9): k in [0..n], n in [0..12]]; // G. C. Greubel, May 29 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 10], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 10).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 29 2021

Formula

Square array: T(n, k) = T(n, k-1) + 9*T(n-1, k-1) + T(n-1, k) with T(n, 0) = T(0, k) = 1.
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*10^j.
Riordan array (1/(1-x), x*(1+9*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 10). - Jean-François Alcover, May 24 2013
Sum_{k=0..n} T(n, k) = A002534(n+1). - G. C. Greubel, May 29 2021

A159551 a(n) = 101*n + 10.

Original entry on oeis.org

10, 111, 212, 313, 414, 515, 616, 717, 818, 919, 1020, 1121, 1222, 1323, 1424, 1525, 1626, 1727, 1828, 1929, 2030, 2131, 2232, 2333, 2434, 2535, 2636, 2737, 2838, 2939, 3040, 3141, 3242, 3343, 3444, 3545, 3646, 3747, 3848, 3949, 4050, 4151, 4252, 4353, 4454, 4555
Offset: 0

Views

Author

Robert G. Wilson v, Apr 14 2009

Keywords

Crossrefs

Programs

  • Magma
    [101*n+10: n in [0..50]]; // Vincenzo Librandi, Jul 30 2011
  • Mathematica
    f[n_] := FromDigits[ IntegerDigits[n^3 + n^2 + n - 1, n + 1]]; Array[f, 54]

Formula

From Elmo R. Oliveira, Apr 03 2025: (Start)
G.f.: (10 + 91*x)/(1-x)^2.
E.g.f.: exp(x)*(10 + 101*x).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Jul 30 2011

A187715 a(n) = 5*n - (9 + (-1)^n)/2.

Original entry on oeis.org

1, 5, 11, 15, 21, 25, 31, 35, 41, 45, 51, 55, 61, 65, 71, 75, 81, 85, 91, 95, 101, 105, 111, 115, 121, 125, 131, 135, 141, 145, 151, 155, 161, 165, 171, 175, 181, 185, 191, 195, 201, 205, 211, 215, 221, 225
Offset: 1

Views

Author

Vincenzo Librandi, Mar 13 2011

Keywords

Comments

Numbers congruent to {1,5} mod 10. - Bruno Berselli, Mar 31 2012

Crossrefs

Cf. A001622, A010711 (first differences), A017281, A017329.

Programs

  • GAP
    Filtered([1..250],n-> n mod 10 =1 or n mod 10 = 5); # Muniru A Asiru, Nov 25 2018
    
  • Magma
    [5*n -(9+(-1)^n)/2: n in [1..60]];
    
  • Maple
    [5*n-(9+(-1)^n)/2$n=1..50]; # Muniru A Asiru, Nov 25 2018
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n+1],a+4,a+6]}; Transpose[NestList[nxt,{1,1},50]][[2]] (* Harvey P. Dale, Feb 16 2013 *)
    Table[BitOr[5*n, 1], {n, 0, 50}] (* Jon Maiga, Nov 24 2018 *)
  • PARI
    vector(50, n, (10*n -9-(-1)^n)/2) \\ G. C. Greubel, Dec 04 2018
    
  • Python
    for n in range(1,60): print(int(5*n - (9 + (-1)**n)/2), end=', ') # Stefano Spezia, Nov 30 2018
    
  • Sage
    [(10*n -9-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Dec 04 2018

Formula

a(n) = a(n-1) + 4 if n is even, a(n) = a(n-1) + 6 if n is odd.
a(n) = 2*a(n-1) - a(n-2) - 2*(-1)^n.
From R. J. Mathar, Mar 15 2011: (Start)
G.f.: x*(1 + 4*x + 5*x^2)/( (1+x)*(1-x)^2 ).
Bisections: a(2*n+1) = A017281(n), a(2*n) = A017329(n-1). (End)
a(n) = 5*(n-1) bitwise-OR 1. - Jon Maiga, Nov 24 2018
E.g.f.: ((10*x-9)*exp(x) - exp(-x) + 10)/2. - G. C. Greubel, Dec 04 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(5+2*sqrt(5))*Pi/20 + 3*log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

Extensions

Definition rewritten by R. J. Mathar, Mar 15 2011

A216405 Numbers which start a run of nine consecutive zero-digit-free decimal integers, each of which is divisible by the sum of its digits.

Original entry on oeis.org

1, 142813628717821, 253323932621811, 1234954171531131, 1713763544613181, 3713154346661821, 5953112416611411, 8711631351783421, 11853531183574141, 12191214257422251, 17137635446131261, 19941476493818971, 21342541323383331, 25628491758925521, 28665872459864731
Offset: 1

Views

Author

Jack Brennen, Oct 16 2012

Keywords

Comments

Each term of the sequence ends with the digit 1.
No run of ten consecutive zero-digit-free decimal integers is possible.

Examples

			The numbers from a(2)=142813628717821 to 142813628717829 are each divisible by their digit sums, which are 61 to 69 respectively.
		

Crossrefs

Subsequence of A217973 and of A017281.

Programs

  • PARI
    \\ Algorithm from Jack Brennen
    list(lim)=my(v=List([1]),m); forstep(d=11, (40320*lim)^(1/9), 10, m=lcm(vector(9,k,d+k-1)); forstep(x=m+d, lim, m, if(sumdigits(x)==d && vecsort(digits(x))[1], listput(v,x)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 16 2012

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A266297 Numbers whose last digit is a square.

Original entry on oeis.org

0, 1, 4, 9, 10, 11, 14, 19, 20, 21, 24, 29, 30, 31, 34, 39, 40, 41, 44, 49, 50, 51, 54, 59, 60, 61, 64, 69, 70, 71, 74, 79, 80, 81, 84, 89, 90, 91, 94, 99, 100, 101, 104, 109, 110, 111, 114, 119, 120, 121, 124, 129, 130, 131, 134, 139, 140, 141, 144, 149
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 26 2015

Keywords

Comments

Numbers ending in 0, 1, 4 and 9.
Union of A008592, A017281, A017317 and A017377. - Hurt
None of these numbers are prime in Z[phi] (where phi = 1/2 + sqrt(5)/2 is the golden ratio), since the numbers in this sequence that are prime in Z can be expressed in the form (a - b sqrt(5))(a + b sqrt(5)). - Alonso del Arte, Dec 30 2015
Union of A197652 and A016897. - Wesley Ivan Hurt, Dec 31 2015
Union of A146763 and A090771. - Wesley Ivan Hurt, Jan 01 2016

Crossrefs

Programs

  • Magma
    [(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n) div 4))/4: n in [1..60]]; // Vincenzo Librandi, Dec 27 2015
    
  • Maple
    A266297:=n->(10*n-11+(-1)^n+(4+2*(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/4: seq(A266297(n), n=1..100);
  • Mathematica
    Table[(10 n - 11 + (-1)^n + (4 + 2 (-1)^n)*(-1)^((2 n - 1 + (-1)^n)/4))/4, {n, 50}] (* G. C. Greubel, Dec 27 2015 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 4, 9, 10}, 60] (* Vincenzo Librandi, Dec 27 2015 *)
    CoefficientList[Series[x*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* Wesley Ivan Hurt, Dec 30 2015 *)
    Flatten[Table[10n + {0, 1, 4, 9}, {n, 0, 19}]] (* Alonso del Arte, Dec 30 2015 *)
    Select[Range[0,150],MemberQ[{0,1,4,9},Mod[#,10]]&] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    is(n) = issquare(n%10); \\ Altug Alkan, Dec 29 2015

Formula

G.f.: x^2*(1 + 3*x + 5*x^2 + x^3)/((x - 1)^2*(1 + x + x^2 + x^3)).
a(n) = a(n - 1) + (n - 4) - a(n - 5) for n > 5.
a(n) = (10n - 11 + (-1)^n + (4 + 2(-1)^n) * (-1)^((2n - 1 + (-1)^n)/4))/4.
a(n+1) - a(n) = A091084(n+1) for n>0.
Sum_{n>=2} (-1)^n/a(n) = (14*sqrt(5)*arccoth(sqrt(5)) - 2*Pi*sqrt(1-2/sqrt(5)) + 16*log(2) + 5*log(5))/40. - Amiram Eldar, Jul 30 2024

A271508 Numbers that are congruent to {1,4} mod 10.

Original entry on oeis.org

1, 4, 11, 14, 21, 24, 31, 34, 41, 44, 51, 54, 61, 64, 71, 74, 81, 84, 91, 94, 101, 104, 111, 114, 121, 124, 131, 134, 141, 144, 151, 154, 161, 164, 171, 174, 181, 184, 191, 194, 201, 204, 211, 214, 221, 224, 231, 234, 241, 244, 251, 254, 261, 264, 271, 274
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 08 2016

Keywords

Comments

Numbers ending in 1 or 4, Union of A017281 and A017317.
a(n+3) gives the sum of 5 consecutive terms of A004442 starting at A004442(n) for n>0. (i.e., a(4) = 14 = 0+3+2+5+4 = Sum_{i=0..4} A004442(n+i)).

Crossrefs

Programs

  • Magma
    [5*n-5-(-1)^n : n in [1..100]];
    
  • Maple
    A271508:=n->5*n-5-(-1)^n: seq(A271508(n), n=1..100);
  • Mathematica
    Table[5 n - 5 - (-1)^n, {n, 60}] (* or *)
    Select[Range[0, 300], MemberQ[{1, 4}, Mod[#, 10]] &]
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+3*x+6*x^2)/((-1+x)^2*(1+x))) \\ Altug Alkan, Apr 09 2016

Formula

G.f.: x*(1+3*x+6*x^2)/((-1+x)^2*(1+x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = 5*n - 5 - (-1)^n.
a(n) = -n + 2*A047241(n).
a(n+1) = n + 1 + 2*A042948(n).
Shifted bisections: a(2n+2) = A017317(n), a(2n+1) = A017281(n).
E.g.f.: 5*(x-1)*exp(x) - exp(-x). - G. C. Greubel, Apr 08 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1+2/sqrt(5))*Pi/10 + log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023

A270968 Reduced 5x+1 function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (5k+1)/2^r, with r as large as possible.

Original entry on oeis.org

3, 1, 13, 9, 23, 7, 33, 19, 43, 3, 53, 29, 63, 17, 73, 39, 83, 11, 93, 49, 103, 27, 113, 59, 123, 1, 133, 69, 143, 37, 153, 79, 163, 21, 173, 89, 183, 47, 193, 99, 203, 13, 213, 109, 223, 57, 233, 119, 243, 31, 253, 129, 263, 67, 273, 139, 283, 9, 293, 149, 303
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2016

Keywords

Comments

The odd-indexed terms a(2i+1) = 10i+3 = A017305(i), i>=0;
a(4i+4) = 10i+9 = A017377(i), i>=0;
a(8i+6) = 10i+7 = A017353(i), i>=0;
a(16i+2) = 10i+1 = A017281(i), i>=0.
Note that a(n) = a(16n-6) = a(6n-2)/3. No multiple of 5 is in this sequence.
a(n) = R(2n-1) < 2n-1 for n = 2, 6, 10, ..., 2+4i,...

Examples

			a(4)=9 because (2*4-1) = 7  -> (5*7+1)/2^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    nextOddK[n_] := Module[{m=5n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
  • PARI
    a(n) = my(m = 2*n-1, c = 5*m+1); c/2^valuation(c, 2); \\ Michel Marcus, Mar 27 2016

Formula

a(n) = A000265(A017341(n-1)). - Michel Marcus, Mar 27 2016

A323178 a(n) = 1 + 100*n^2 for n >= 0.

Original entry on oeis.org

1, 101, 401, 901, 1601, 2501, 3601, 4901, 6401, 8101, 10001, 12101, 14401, 16901, 19601, 22501, 25601, 28901, 32401, 36101, 40001, 44101, 48401, 52901, 57601, 62501, 67601, 72901, 78401, 84101, 90001, 96101, 102401, 108901
Offset: 0

Views

Author

Paul Curtz, Jan 06 2019

Keywords

Comments

Terms of A261327 ending in 1 (01 for n > 0.)
a(n) mod 9 = period 9: repeat [1, 2, 5, 1, 8, 8, 1, 5, 2] = A275704(n+3).
(Analogous sequence: b(n) = 29 + 100*n*(n+1) = A261327(A017329) = 29, 229, 629, ... .)

Crossrefs

Subsequence of A017281.

Programs

  • Mathematica
    a[n_] := 1 + 100*n^2 ; Array[a, 50, 0] (* or *)
    CoefficientList[Series[(-1 - 98 x - 101 x^2)/(-1 + x)^3, {x, 0, 50}], x] (* or *)
    CoefficientList[Series[E^x (1 + 100 x + 100 x^2), {x, 0, 50}], x]*Table[n!, {n, 0, 50}] (* Stefano Spezia, Jan 06 2019 *)

Formula

a(n) = A261327(A008602(n)).
Recurrence: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2 with initial values a(0) = 1, a(1) = 101 and a(2) = 401.
From Stefano Spezia, Jan 06 2019: (Start)
O.g.f.: (-1 - 98*x - 101*x^2)/(-1 + x)^3.
E.g.f.: exp(x)*(1 + 100*x + 100*x^2).
(End)

Extensions

Corrected and extended (recurrence formula) by Werner Schulte, Feb 18 2019
Previous Showing 61-69 of 69 results.