cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A355309 Carmichael numbers ending in 3.

Original entry on oeis.org

52633, 63973, 334153, 670033, 997633, 2508013, 2628073, 5968873, 6733693, 13696033, 15829633, 15888313, 18900973, 26280073, 27336673, 46483633, 53711113, 65241793, 67653433, 75765313, 124630273, 133344793, 158864833, 182356993, 227752993, 242641153, 292244833, 426821473, 577240273, 580565233, 600892993
Offset: 1

Views

Author

Omar E. Pol, Jul 25 2022

Keywords

Crossrefs

Intersection of A002997 and A017305.

Programs

  • Mathematica
    Select[10*Range[0, 10^7] + 3, CompositeQ[#] && Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jul 25 2022 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A355309_gen(): # generator of terms
        for n in count(3,10):
            f = factorint(n)
            if len(f) == sum(f.values()) > 1 and not any((n-1) % (p-1) for p in f):
                yield n
    A355309_list = list(islice(A355309_gen(),5)) # Chai Wah Wu, Jul 26 2022

A017198 a(n) = (9*n + 3)^2.

Original entry on oeis.org

9, 144, 441, 900, 1521, 2304, 3249, 4356, 5625, 7056, 8649, 10404, 12321, 14400, 16641, 19044, 21609, 24336, 27225, 30276, 33489, 36864, 40401, 44100, 47961, 51984, 56169, 60516, 65025, 69696
Offset: 0

Views

Author

Keywords

Comments

a(n) = A000290(A017197(n)) = A156677(n+2) + A017305(n). - Reinhard Zumkeller, Jul 13 2010

Programs

Formula

a(0)=9, a(1)=144, a(2)=441, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 25 2015
G.f.: (-9 - 117*x - 36*x^2) / (x-1)^3. - R. J. Mathar, Jul 14 2016

A136191 Primes p such that 2p-3 and 2p+3 are both prime (A092110), with last decimal being 3.

Original entry on oeis.org

13, 43, 53, 113, 193, 223, 283, 563, 613, 643, 743, 773, 1033, 1193, 1453, 1483, 1543, 1583, 1663, 1733, 2143, 2393, 2503, 2843, 3163, 3413, 3433, 3793, 3823, 4133, 4463, 4483, 4523, 4603, 4673, 4813, 5443, 5743, 5953, 6073, 6133, 6163, 6553, 6733, 6863
Offset: 1

Views

Author

Carlos Alves, Dec 20 2007

Keywords

Comments

Except for p=5, the decimals in A092110 end in 3 or 7.
Theorem: If in the triple (2n-3,n,2n+3) all numbers are primes then n=5 or the decimal representation of n ends in 3 or 7. Proof: Consider Q=(2n-3)n(2n+3), by hypothesis factorized into primes. If n is prime, n=10k+r with r=1,3,7 or 9. We want to exclude r=1 and r=9. Case n=10k+1. Then Q=5(-1+6k+240k^2+800k^3) and 5 is a factor; thus 2n-3=5 or n=5 or 2n+1=5 : this means n=4 (not prime); or n=5 (included); or n=2 (impossible, because 2n-3=1). Case n=10k+9. Then Q=5(567+1926k+2160k^2+800k^3) and 5 is a factor; the arguments, for the previous case, also hold.

Crossrefs

Intersection of A092110 and A017305.
Cf. A136192.

Programs

  • Mathematica
    Select[Prime[Range[1000]],AllTrue[{2#-3,2#+3},PrimeQ]&&IntegerDigits[#][[-1]]==3&] (* James C. McMahon, Apr 30 2025 *)
  • PARI
    isok(n)  = (n % 10 == 3) && isprime(n) && isprime(2*n-3) && isprime(2*n+3); \\ Michel Marcus, Sep 02 2013

A154408 Primes p such that (p^2 + 1)/10 is also prime.

Original entry on oeis.org

7, 13, 17, 23, 37, 53, 67, 97, 103, 113, 127, 137, 163, 167, 197, 223, 227, 263, 277, 283, 347, 367, 373, 383, 397, 433, 503, 547, 587, 617, 653, 673, 677, 683, 773, 797, 823, 877, 883, 937, 947, 953, 997, 1063, 1103, 1117, 1163, 1187, 1213, 1367, 1423, 1447
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Examples

			37 is in the sequence because both 37 and (37^2 + 1)/10 = 137 are primes. [_Emeric Deutsch_, Jan 21 2009]
		

Crossrefs

Cf. A017305.

Programs

  • Magma
    [p: p in PrimesInInterval(7, 2500) | IsPrime((p^2 + 1) div 10)]; // Vincenzo Librandi, Oct 15 2012
  • Maple
    a := proc (n) if isprime(n) = true and type((1/10)*n^2+1/10, integer) = true and isprime((1/10)*n^2+1/10) = true then n else end if end proc: seq(a(n), n = 2 .. 1700); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[(#^2 + 1)/10] &] (* Vincenzo Librandi, Oct 15 2012 *)

Extensions

Corrected and extended by Emeric Deutsch, Jan 21 2009

A017307 a(n) = (10*n + 3)^3.

Original entry on oeis.org

27, 2197, 12167, 35937, 79507, 148877, 250047, 389017, 571787, 804357, 1092727, 1442897, 1860867, 2352637, 2924207, 3581577, 4330747, 5177717, 6128487, 7189057, 8365427, 9663597, 11089567, 12649337, 14348907, 16194277, 18191447, 20346417, 22665187, 25153757, 27818127
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+3)^3: n in [0..35]]; // Vincenzo Librandi, Jul 31 2011
    
  • Mathematica
    (10 Range[0,30]+3)^3 (* or *) LinearRecurrence[{4,-6,4,-1},{27,2197,12167,35937},30] (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    a(n) = (10*n + 3)^3; \\ Michel Marcus, Apr 14 2022

Formula

G.f.: (27 + 2089*x + 3541*x^2 + 343*x^3)/(x-1)^4. - R. J. Mathar, Mar 20 2018
a(n) = A000578(A017305(n)). - Michel Marcus, Apr 14 2022

A152161 a(n) = 100*n^2 + 100*n + 21.

Original entry on oeis.org

21, 221, 621, 1221, 2021, 3021, 4221, 5621, 7221, 9021, 11021, 13221, 15621, 18221, 21021, 24021, 27221, 30621, 34221, 38021, 42021, 46221, 50621, 55221, 60021, 65021, 70221, 75621, 81221, 87021, 93021, 99221, 105621, 112221, 119021, 126021, 133221, 140621, 148221
Offset: 0

Views

Author

Paul Curtz, Nov 27 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A017305(n)*A017353(n) = A061037(10*n+3).
From Amiram Eldar, Feb 20 2023: (Start)
Sum_{n>=0} 1/a(n) = sqrt(5-2*sqrt(5))*Pi/40.
Sum_{n>=0} (-1)^n/a(n) = (sqrt(10-2*sqrt(5))*log(cot(Pi/20)) + sqrt(10+2*sqrt(5))*log(tan(3*Pi/20)))/40.
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/10)/phi, where phi is the golden ratio (A001622).
Product_{n>=0} (1 + 1/a(n)) = 2*cos(sqrt(3)*Pi/10)/phi. (End)
From Elmo R. Oliveira, Nov 27 2024: (Start)
G.f.: (21 + 158*x + 21*x^2)/(1-x)^3.
E.g.f.: (21 + 200*x + 100*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A163676 Triangle T(n,m) = 4mn + 2m + 2n - 1 read by rows.

Original entry on oeis.org

7, 13, 23, 19, 33, 47, 25, 43, 61, 79, 31, 53, 75, 97, 119, 37, 63, 89, 115, 141, 167, 43, 73, 103, 133, 163, 193, 223, 49, 83, 117, 151, 185, 219, 253, 287, 55, 93, 131, 169, 207, 245, 283, 321, 359, 61, 103, 145, 187, 229, 271, 313, 355, 397, 439, 67, 113, 159
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

2 + T(n,m) = (2*n+1)*(2*m+1) are composite numbers. - clarified by R. J. Mathar, Oct 16 2009
First column: A016921, second column: A017305, third column: A126980. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   7;
  13,  23;
  19,  33,  47;
  25,  43,  61,  79;
  31,  53,  75,  97, 119;
  37,  63,  89, 115, 141, 167;
  43,  73, 103, 133, 163, 193, 223;
  49,  83, 117, 151, 185, 219, 253, 287;
  55,  93, 131, 169, 207, 245, 283, 321, 359;
  61, 103, 145, 187, 229, 271, 313, 355, 397, 439;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k - 1: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Mathematica
    t[n_,k_]:=4 n*k + 2n + 2k - 1; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(4*n*k + 2*n + 2*k - 1, ", "))) \\ G. C. Greubel, Aug 02 2017

Formula

T(n,m) = A155151(n,m) - 3 = A155156(n,m) - 1. - R. J. Mathar, Oct 16 2009

A168437 a(n) = 3 + 10*floor(n/2).

Original entry on oeis.org

3, 13, 13, 23, 23, 33, 33, 43, 43, 53, 53, 63, 63, 73, 73, 83, 83, 93, 93, 103, 103, 113, 113, 123, 123, 133, 133, 143, 143, 153, 153, 163, 163, 173, 173, 183, 183, 193, 193, 203, 203, 213, 213, 223, 223, 233, 233, 243, 243, 253, 253, 263, 263, 273, 273, 283
Offset: 1

Views

Author

Vincenzo Librandi, Nov 25 2009

Keywords

Crossrefs

Bisections of A168437 are A017305 and (A017305 MINUS {3}). - Rick L. Shepherd, Jun 17 2010

Programs

  • Magma
    [3+10*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[3 + 10 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[(3 + 10 x - 3 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{3,13,13},70] (* Harvey P. Dale, May 26 2021 *)
  • PARI
    a(n)=n\2*10+3 \\ Charles R Greathouse IV, Jan 11 2012
    

Formula

a(n) = 10*n - a(n-1) - 4, with n>1, a(1) = 3.
a(n) = 10*floor(n/2) + 3 = A168641(n) + 3. - Rick L. Shepherd, Jun 17 2010
G.f.: x*(3 + 10*x - 3*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
a(n) = (1 + 5*(-1)^n + 10*n)/2. - Bruno Berselli, Sep 19 2013
E.g.f.: (1/2)*(5 - 6*exp(x) + (10*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

Extensions

Edited by Rick L. Shepherd, Jun 17 2010
Definition rewritten, using Shepherd's formula, by Vincenzo Librandi, Sep 19 2013

A385623 Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.

Original entry on oeis.org

0, 10, 1, 20, 11, 2, 30, 21, 12, 3, 40, 31, 22, 13, 4, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 70, 61, 52, 43, 34, 25, 16, 7, 80, 71, 62, 53, 44, 35, 26, 17, 8, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 100, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10, 110, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 11
Offset: 0

Views

Author

Stefano Spezia, Jul 05 2025

Keywords

Examples

			Array begins as:
   0,  1,  2,  3,  4,  5,  6,  7, ...
  10, 11, 12, 13, 14, 15, 16, 17, ...
  20, 21, 22, 23, 24, 25, 26, 27, ...
  30, 31, 32, 33, 34, 35, 36, 37, ...
  40, 41, 42, 43, 44, 45, 46, 47, ...
  50, 51, 52, 53, 54, 55, 56, 57, ...
  60, 61, 62, 63, 64, 65, 66, 67, ...
  ...
		

Crossrefs

Cf. A001477 (1st row), A020338 (main diagonal), A055642, A385624 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=FromDigits[Join[IntegerDigits[n],IntegerDigits[k]]]; Table[A[n,k],{n,0,6},{k,0,7}] (* or *)
    A[n_,k_]:=If[k==0,10n,n*10^(Floor[Log10[k]]+1)+k]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
  • PARI
    T(n, k) = fromdigits(concat(digits(n), digits(k))); \\ Michel Marcus, Jul 06 2025

Formula

A(n,0) = 10*n and A(n,k) = n*10^(floor(log_10(k)) + 1) + k for k > 0.

A017312 a(n) = (10*n + 3)^8.

Original entry on oeis.org

6561, 815730721, 78310985281, 1406408618241, 11688200277601, 62259690411361, 248155780267521, 806460091894081, 2252292232139041, 5595818096650401, 12667700813876161, 26584441929064321, 52389094428262881
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+3)^8: n in [0..20]]; // Vincenzo Librandi, Jul 31 2011
  • Maple
    A017312:=n->(10*n+3)^8; seq(A017312(n), n=0..20); # Wesley Ivan Hurt, Jan 23 2014
  • Mathematica
    Table[(10*n + 3)^8, {n, 0, 20}] (* Wesley Ivan Hurt, Jan 23 2014 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{6561,815730721,78310985281,1406408618241,11688200277601,62259690411361,248155780267521,806460091894081,2252292232139041},20] (* Harvey P. Dale, Oct 16 2023 *)

Formula

a(n) = A017305(n)^8 = A001016(A017305(n)). - Wesley Ivan Hurt, Jan 23 2014
Previous Showing 11-20 of 27 results. Next