cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A017313 a(n) = (10*n + 3)^9.

Original entry on oeis.org

19683, 10604499373, 1801152661463, 46411484401953, 502592611936843, 3299763591802133, 15633814156853823, 58871586708267913, 186940255267540403, 520411082988487293, 1304773183829244583, 3004041937984268273
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001017 (n^9), A017305 (10n+3).

Programs

  • Magma
    [(10*n+3)^9: n in [0..15]]; // Vincenzo Librandi, Jul 31 2011
    
  • Mathematica
    (10*Range[0,20]+3)^9 (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1},{19683,10604499373,1801152661463,46411484401953,502592611936843,3299763591802133,15633814156853823,58871586708267913,186940255267540403,520411082988487293},30] (* Harvey P. Dale, Sep 14 2013 *)
  • Python
    for n in range(0, 15): print((10*n + 3)**9, end=", ") # Stefano Spezia, Oct 20 2018

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=19683, a(1)=10604499373, a(2)=1801152661463, a(3)=46411484401953, a(4)=502592611936843, a(5)=3299763591802133, a(6)=15633814156853823, a(7)=58871586708267913, a(8)=186940255267540403, a(9)=520411082988487293. - Harvey P. Dale, Sep 14 2013

A032586 Lucky numbers ending with digit 3.

Original entry on oeis.org

3, 13, 33, 43, 63, 73, 93, 133, 163, 193, 223, 273, 283, 303, 393, 433, 463, 483, 553, 583, 613, 643, 673, 693, 723, 823, 873, 883, 903, 933, 993, 1023, 1053, 1093, 1123, 1183, 1203, 1233, 1263, 1303, 1323, 1473, 1503, 1533, 1543, 1563, 1663, 1693, 1723
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

Also, lucky numbers (A000959) which are congruent to 3 mod 5 (because only numbers ending in 8 could make a difference, but these are removed in the first step of the lucky sieve). - R. J. Mathar, Apr 29 2008

Crossrefs

Intersection of A000959 and A017305.

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar

A135580 Largest prime visible as a substring of 10n+3.

Original entry on oeis.org

3, 13, 23, 3, 43, 53, 3, 73, 83, 3, 103, 113, 23, 13, 43, 53, 163, 173, 83, 193, 3, 13, 223, 233, 43, 53, 263, 73, 283, 293, 3, 313, 23, 3, 43, 353, 3, 373, 383, 3, 3, 41, 23, 433, 443, 53, 463, 73, 83, 3, 503, 13, 523, 53, 43, 53, 563, 73, 83, 593, 3, 613, 23, 3, 643, 653, 3
Offset: 0

Views

Author

Zak Seidov, Feb 24 2008

Keywords

Examples

			a(0) = 3 because 10 * 0 + 3 = 3 (prime),
a(1) = 13 because 10 * 1 + 3 = 13 (prime),
a(3) = 3 because 10 * 3 + 3 = 33 (composite). Substrings of 33 are 0, 3, 33 and the largest  prime of these is 3.
a(78) = 83 because 10 * 78 + 3 = 783 (composite). The largest prime substring is 83.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Max[Select[FromDigits/@Subsequences[IntegerDigits[10n+3]],PrimeQ]] (* James C. McMahon, Apr 16 2025 *)

Formula

a(n) = A047814(A017305(n)). - Michel Marcus, Apr 16 2025

A152579 a(n) = (10*n+3)*(10*n+17).

Original entry on oeis.org

51, 351, 851, 1551, 2451, 3551, 4851, 6351, 8051, 9951, 12051, 14351, 16851, 19551, 22451, 25551, 28851, 32351, 36051, 39951, 44051, 48351, 52851, 57551, 62451, 67551, 72851, 78351, 84051, 89951, 96051, 102351, 108851, 115551, 122451, 129551, 136851, 144351, 152051, 159951
Offset: 0

Views

Author

Paul Curtz, Dec 08 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 100*n*(n+2) + 51 = 100*A005563(n) + 51 = 100*(n+1)^2 - 49 = A017270(n+1) - 49.
a(n) = 2*a(n-2) - a(n-2) + 200.
a(n) = 50*A056220(n+1) + 1.
a(n+1) - a(n) = 200*n + 300 = 100*A144396(n+1).
G.f.: (-51 - 198*x + 49*x^2)/(x-1)^3. - R. J. Mathar, Jul 01 2011
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(51 + 300*x + 100*x^2).
a(n) = A017305(n)*A017353(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A154409 Primes of the form 10n^2+6n+1.

Original entry on oeis.org

17, 53, 109, 281, 397, 1061, 1277, 2341, 2657, 4973, 6917, 8009, 9181, 10433, 13177, 13913, 14669, 18749, 20521, 25301, 26317, 28409, 32833, 42641, 45293, 46649, 56701, 58217, 59753, 67733, 69389, 76213, 77969, 83357, 85193, 87049, 90821
Offset: 1

Views

Author

Vincenzo Librandi, Jan 09 2009

Keywords

Comments

Subsequence of A207337. Primes of the form n^2+(3n+1)^2. - Bruno Berselli, Jul 17 2012

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 10*n^2+6*n+1]; // Vincenzo Librandi, Jul 17 2012
  • Mathematica
    Select[Table[10n^2+6n+1,{n,0,700}],PrimeQ] (* Vincenzo Librandi, Jul 17 2012 *)

Extensions

Misleading formula removed - R. J. Mathar, Oct 18 2010

A270968 Reduced 5x+1 function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (5k+1)/2^r, with r as large as possible.

Original entry on oeis.org

3, 1, 13, 9, 23, 7, 33, 19, 43, 3, 53, 29, 63, 17, 73, 39, 83, 11, 93, 49, 103, 27, 113, 59, 123, 1, 133, 69, 143, 37, 153, 79, 163, 21, 173, 89, 183, 47, 193, 99, 203, 13, 213, 109, 223, 57, 233, 119, 243, 31, 253, 129, 263, 67, 273, 139, 283, 9, 293, 149, 303
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2016

Keywords

Comments

The odd-indexed terms a(2i+1) = 10i+3 = A017305(i), i>=0;
a(4i+4) = 10i+9 = A017377(i), i>=0;
a(8i+6) = 10i+7 = A017353(i), i>=0;
a(16i+2) = 10i+1 = A017281(i), i>=0.
Note that a(n) = a(16n-6) = a(6n-2)/3. No multiple of 5 is in this sequence.
a(n) = R(2n-1) < 2n-1 for n = 2, 6, 10, ..., 2+4i,...

Examples

			a(4)=9 because (2*4-1) = 7  -> (5*7+1)/2^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    nextOddK[n_] := Module[{m=5n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
  • PARI
    a(n) = my(m = 2*n-1, c = 5*m+1); c/2^valuation(c, 2); \\ Michel Marcus, Mar 27 2016

Formula

a(n) = A000265(A017341(n-1)). - Michel Marcus, Mar 27 2016

A384735 Numbers that are prime or end in a prime number (of any length).

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 15, 17, 19, 22, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 42, 43, 45, 47, 52, 53, 55, 57, 59, 61, 62, 63, 65, 67, 71, 72, 73, 75, 77, 79, 82, 83, 85, 87, 89, 92, 93, 95, 97, 101, 102, 103, 105, 107, 109, 111, 112, 113, 115, 117
Offset: 1

Views

Author

Mohd Anwar Jamal Faiz, Jun 08 2025

Keywords

Comments

If k is a term, so is m*10^A055642(k) + k for all m > 0. - Michael S. Branicky, Jun 10 2025

Examples

			2, 3, 5, 7 and 11 are terms since they are prime.
15 is a term since it ends in the prime 5.
111 is a term since it ends in the prime 11.
		

Crossrefs

Programs

  • Maple
    q:= n-> isprime(n) or (k-> k>1 and q(n mod 10^(k-1)))(length(n)):
    select(q, [$1..150])[];  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    q[n_] := AnyTrue[Range[1, IntegerLength[n]-1], PrimeQ[Mod[n, 10^#]] &]; Select[Range[120], PrimeQ[#] || q[#] &] (* Amiram Eldar, Jun 10 2025 *)
  • PARI
    isok(x) = my(y=x, nb=0); while(y>1, y/=10; nb++; if (isprime(x%(10^nb)), return(1))); \\ Michel Marcus, Jun 10 2025
  • Python
    from sympy import isprime
    def ok(n):
        s = str(n)
        return any(isprime(int(s[i:])) for i in range(len(s)))
    print([k for k in range(118) if ok(k)])
    
Previous Showing 21-27 of 27 results.