cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A230540 a(n) = 2*n*3^(2*n-1).

Original entry on oeis.org

0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2013

Keywords

Comments

Arithmetic derivative of 9^n: a(n) = A003415(9^n).
Sum of reciprocals of a(n), for n>0: (3/2)*log(9/8).

Crossrefs

Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), A230539 (k=8), this sequence, A085708 (k=10), A081127 (k=11).

Programs

  • Magma
    [2*n*3^(2*n-1): n in [0..20]];
    
  • Mathematica
    Table[2 n 3^(2 n - 1), {n, 0, 20}]
  • PARI
    a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013

Formula

G.f.: 6*x/(1-9*x)^2.
a(n) = 6*A053540(n), with A053540(0)=0.

A005985 Length of longest trail (i.e., path with all distinct edges) on the edges of an n-cube.

Original entry on oeis.org

0, 1, 4, 9, 32, 65, 192, 385, 1024, 2049, 5120, 10241, 24576, 49153, 114688, 229377, 524288, 1048577, 2359296, 4718593, 10485760, 20971521, 46137344, 92274689, 201326592, 402653185, 872415232, 1744830465, 3758096384, 7516192769, 16106127360, 32212254721
Offset: 0

Views

Author

Keywords

Comments

Walk along edges of n-cube without walking along any edge twice; a(n) = number of edges in longest path.
For even n we can traverse all the edges, so a(n) = number of edges = n*2^(n-1). For n odd, every vertex has odd degree, so we need (# vertices)/2 = 2^(n-1) separate paths to cover them all; we will not be able to traverse more than n*2^(n-1) - (2^(n-1)-1) edges before Euler blocks the way. There is a recursive construction (temporarily lost) which achieves this bound.
Suppose n is odd. Delete all but one edge between {0,1}^(n-1) x {0} = A and {0,1}^(n-1) x {1} = B. Starting at the vertex v of A that has an edge to B, do an Euler tour of A coming back to v, then cross over to B and do an Euler tour of B.
This gives you a longest possible trail. - Robert Israel, Jun 02 2015

Examples

			For n=3, let the vertices be labeled with Cartesian coordinates (0,0,0), (0,0,1), ..., (1,1,1). An example of a maximal path (of length 9) visits the ten vertices: (0,0,0), (1,0,0), (1,0,1), (1,1,1), (0,1,1), (0,0,1), (0,0,0), (0,1,0), (1,1,0), (1,0,0).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A018215 (bisection).

Programs

  • Magma
    [(2*n*2^n-(1-(-1)^n)*(2^n-2))/4 : n in [0..50]]; // Wesley Ivan Hurt, May 31 2015
    
  • Maple
    A005985:=n->(2*n*2^n-(1-(-1)^n)*(2^n-2))/4: seq(A005985(n), n=0..50); # Wesley Ivan Hurt, May 31 2015
  • Mathematica
    Table[(2*n*2^n - (1 - (-1)^n)(2^n - 2))/4, {n, 0, 20}] (* Giovanni Resta, May 31 2015 *)
    LinearRecurrence[{2,5,-10,-4,8},{0,1,4,9,32},40] (* Harvey P. Dale, Jun 11 2015 *)
  • PARI
    a(n)=(2*n<Charles R Greathouse IV, Jun 03 2015

Formula

G.f.: -x*(1 + 2*x - 4*x^2 + 4*x^3) / ( (x - 1)*(2*x + 1)*(1 + x)*(-1 + 2*x)^2 ). - Simon Plouffe in his 1992 dissertation.
a(n) = (2*n*2^n-(1-(-1)^n)*(2^n-2))/4. - Giovanni Resta, May 31 2015
a(n) = 2*a(n-1)+5*a(n-2)-10*a(n-3)-4*a(n-4)+8*a(n-5), n>5. - Wesley Ivan Hurt, May 31 2015

Extensions

Revised by Colin Mallows, Jun 13 2005
More terms from Erich Friedman, Aug 08 2005

A362353 Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.

Original entry on oeis.org

1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0

Views

Author

Keywords

Comments

This is the member N = 2 of a family of signed triangles with row sums n! = A000142(n): T(N; n, k) = (-1)^(n-k)*binomial(n, k)*(k + N + 1)^n, for integer N, n >= 0 and k = 0, 1, ..., n. The row polynomials PS(N; n, z) = Sum_{k=0..n} T(N; n, k)*z^k = ((-1)^n/z^N)*D_{n,N+1,n}(z) in [Sidi 1980].
For N = -1, 0 and 1 see A258773(n, k), A075513(n+1, k) and (-1)^(n-k) * A154715(n, k), respectively.
The column sequences, for k = 0, 1, ..., 6 and n >= k, are A141413(n+2), (-1)^(n+1)*A018215(n) = 4*(-1)^(n+1)*A002697(n), 5^2*(-1)^n*A081135(n), (-1)^(n+1)*A128964(n-1) = 6^3*(-1)^(n+1)*A081144(n), 7^4*(-1)^n*A139641(n-4), 2^15*(-1)^(n+1)*A173155(n-5), 3^12*(-1)^n*A173191(n-6), respectively.
The e.g.f. of the triangle (see below) needs the exponential convolution (LambertW(-z)/(-z))^2 = Sum_{n>=0} c(2; n)*z^n/n!, where c(2; n) = Sum_{m=0..n} |A137352(n+1, m)|*2^m = A007334(n+2).
The row sums give n! = A000142(n).

Examples

			The triangle T begins:
n\k    0       1        2         3         4          5          6         7
0:     1
1:    -3       4
2:     9     -32       25
3:   -27     192     -375       216
4:    81   -1024     3750     -5184      2401
5:  -243    5120   -31250     77760    -84035      32768
6:   729  -24576   234375   -933120   1764735   -1572864     531441
7: -2187  114688 -1640625   9797760 -28824005   44040192  -33480783  10000000
...
n = 8:  6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
		

Crossrefs

Cf. A000142 (row sums), A075513, A154715, A258773.
Columns k = 0..6 involve (see above): A002697, A007334, A018215, A081135, A081144, A128964, A137352, A139641, A141413, A173155, A173191.

Programs

  • Mathematica
    A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* Paolo Xausa, Jul 30 2023 *)

Formula

T(n, k) = (-1)^(n-k)*binomial(n, k)*(k + 3)^n, for n >= 0, k = 0, 1, ..., n.
O.g.f. of column k: (x*(k + 3))^k/(1 - (k + 3)*x)^(k+1), for k >= 0.
E.g.f. of column k: exp(-(k + 3)*x)*((k + 3)*x)^k/k!, for k >= 0.
E.g.f. of the triangle, that is, the e.g.f. of its row polynomials {PS(2;n,y)}_{n>=0}): ES(2;y,x) = exp(-3*x)*(1/3)*(d/dz)(W(-z)/(-z))^2, after replacing z by x*y*exp(-x), where W is the Lambert W-function for the principal branch. This becomes ES(2;y,x) = exp(-3*x)*exp(3*(-W(-z)))/(1 - (-W(-z)), with z = x*y*exp(-x).

Extensions

a(41)-a(44) from Paolo Xausa, Jul 31 2023

A134574 Array, a(n,k) = total size of all n-length words on a k-letter alphabet, read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 24, 18, 4, 5, 64, 81, 32, 5, 6, 160, 324, 192, 50, 6, 7, 384, 1215, 1024, 375, 72, 7, 8, 896, 4374, 5120, 2500, 648, 98, 8, 9, 2048, 15309, 24576, 15625, 5184, 1029, 128, 9, 10, 4608, 52488, 114688, 93750, 38880, 9604, 1536, 162, 10
Offset: 1

Views

Author

Ross La Haye, Jan 22 2008

Keywords

Examples

			a(2,2) = 8 because there are 2^2 = 4 2-length words on a 2 letter alphabet, each of size 2 and 2*4 = 8.
Array begins:
==================================================================
n\k|  1     2       3        4         5         6          7  ...
---|--------------------------------------------------------------
1  |  1     2       3        4         5         6          7  ...
2  |  2     8      18       32        50        72         98  ...
3  |  3    24      81      192       375       648       1029  ...
4  |  4    64     324     1024      2500      5184       9604  ...
5  |  5   160    1215     5120     15625     38880      84035  ...
6  |  6   384    4374    24576     93750    279936     705894  ...
7  |  7   896   15309   114688    546875   1959552    5764801  ...
8  |  8  2048   52488   524288   3125000  13436928   46118408  ...
9  |  9  4608  177147  2359296  17578125  90699264  363182463  ...
... - _Franck Maminirina Ramaharo_, Aug 07 2018
		

Crossrefs

Cf. a(n, 1) = a(1, k) = A000027(n); a(n, 2) = A036289(n); a(n, 3) = A036290(n); a(n, 4) = A018215(n); a(n, 5) = A036291(n); a(n, 6) = A036292(n); a(n, 7) = A036293(n); a(n, 8) = A036294(n); a(2, k) = A001105(k); a(3, k) = A117642(k); a(n, n) = A007778(n); a(n, n+1) = A066274(n+1): sum[a(i-1, n-i+1), {i, 1, n}] = A062807(n).

Programs

  • Mathematica
    t[n_, k_] := Sum[k^n, {j, n}]; Table[ t[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 07 2018 *)

Formula

a(n,k) = n*k^n.
O.g.f. (by columns): (k*x)/(-1+k*x)^2.
E.g.f. (by columns): k*x*exp(k*x).
a(n,k) = Sum[k^n,{j,1,n}] = n*Sum[C(n,m)*(k-1)^m,{m,0,n}]. - Ross La Haye, Jan 26 2008
Previous Showing 11-14 of 14 results.