cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 165 results. Next

A318443 Numerators of the sequence whose Dirichlet convolution with itself yields A018804, Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 3, 5, 23, 9, 15, 13, 91, 59, 27, 21, 115, 25, 39, 45, 1451, 33, 177, 37, 207, 65, 63, 45, 455, 179, 75, 353, 299, 57, 135, 61, 5797, 105, 99, 117, 1357, 73, 111, 125, 819, 81, 195, 85, 483, 531, 135, 93, 7255, 363, 537, 165, 575, 105, 1059, 189, 1183, 185, 171, 117, 1035, 121, 183, 767, 46355, 225, 315, 133, 759, 225, 351, 141, 5369
Offset: 1

Views

Author

Antti Karttunen and Andrew Howroyd, Aug 29 2018

Keywords

Comments

Because A018804 gets only odd values on primes, A046644 gives the sequence of denominators. Because both of those sequences are multiplicative, this is also.

Crossrefs

Cf. A018804, A046644 (denominators).
Cf. also A318444.

Programs

  • Mathematica
    a18804[n_] := Sum[n EulerPhi[d]/d, {d, Divisors[n]}];
    f[1] = 1; f[n_] := f[n] = 1/2 (a18804[n] - Sum[f[d] f[n/d], {d, Divisors[ n][[2 ;; -2]]}]);
    a[n_] := f[n] // Numerator;
    Array[a, 72] (* Jean-François Alcover, Sep 13 2018 *)
  • PARI
    up_to = 16384;
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318443aux = DirSqrt(vector(up_to, n, A018804(n)));
    A318443(n) = numerator(v318443aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, (1-X)^(1/2)/(1-p*X))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A018804(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A318443(k) / A046644(k) ~ sqrt(3/2)*n^2/Pi. - Vaclav Kotesovec, May 10 2025

A340078 a(n) = gcd(n, 1+A018804(n)), where A018804(n) = Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 1, 1, 2, 11, 1, 13, 2, 1, 1, 17, 2, 19, 1, 3, 2, 23, 1, 1, 2, 1, 7, 29, 2, 31, 1, 1, 2, 1, 1, 37, 2, 3, 1, 41, 14, 43, 1, 5, 2, 47, 1, 1, 2, 1, 1, 53, 2, 5, 1, 3, 2, 59, 1, 61, 2, 1, 1, 1, 2, 67, 1, 1, 2, 71, 1, 73, 2, 1, 1, 1, 2, 79, 1, 1, 2, 83, 1, 1, 2, 1, 1, 89, 2, 1, 1, 3, 2, 1, 3, 97, 2
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Crossrefs

Cf. also A055023, A323071 (similar but different sequences).

Programs

Formula

a(n) = gcd(n, 1+A018804(n)).

A340079 a(n) = n / gcd(n, 1+A018804(n)), where A018804(n) = Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 4, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 3, 1, 44, 9, 23, 1, 48, 49, 25, 51, 52, 1, 27, 11, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1, 37, 75, 76, 77, 39, 1, 80, 81, 41, 1, 84, 85, 43, 87, 88
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2020

Keywords

Comments

It is conjectured that this is 1 iff n is 1 or a prime. See Thomas Ordowski's Oct 22 2014 comment in A018804.

Crossrefs

Cf. also A055032, A323072 (similar but different sequences).

Programs

Formula

a(n) = n / A340078(n) = n / gcd(n, 1+A018804(n)).

A340080 a(n) = (1+A018804(n)) / gcd(n, 1+A018804(n)), where A018804(n) = Sum_{k=1..n} gcd(k, n).

Original entry on oeis.org

2, 2, 2, 9, 2, 8, 2, 21, 22, 14, 2, 41, 2, 20, 46, 49, 2, 32, 2, 73, 22, 32, 2, 101, 66, 38, 82, 15, 2, 68, 2, 113, 106, 50, 118, 169, 2, 56, 42, 181, 2, 14, 2, 169, 38, 68, 2, 241, 134, 98, 166, 201, 2, 122, 38, 261, 62, 86, 2, 361, 2, 92, 274, 257, 226, 158, 2, 265, 226, 176, 2, 421, 2, 110, 326, 297, 274, 188
Offset: 1

Views

Author

Antti Karttunen, Dec 31 2020

Keywords

Crossrefs

Programs

Formula

a(n) = (1+A018804(n)) / gcd(n, 1+A018804(n)).

A379363 Numerators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 4, 23, 199, 637, 661, 8953, 9187, 65869, 201247, 205927, 26048, 132697, 134272, 135637, 2190667, 24424937, 3513791, 131554667, 132348317, 133227437, 938941259, 947830139, 190366027, 2947643, 74101331, 223443593, 2916305159, 55809797621, 55978686341, 3437499844001
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 4/3, 23/15, 199/120, 637/360, 661/360, 8953/4680, 9187/4680, 65869/32760, 201247/98280, 205927/98280, 26048/12285, ...
		

Crossrefs

Cf. A018804, A272718, A370895, A379364 (denominators), A379365.

Programs

  • Mathematica
    f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
  • PARI
    pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A018804(k)).
a(n)/A379364(n) = Sum_{j=0..N} K_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2)), for any integer N >= 1, where K_j are constants, and in particular K_0 = (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 1.30088863073811791549... .

A379364 Denominators of the partial sums of the reciprocals of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 3, 15, 120, 360, 360, 4680, 4680, 32760, 98280, 98280, 12285, 61425, 61425, 61425, 982800, 10810800, 1544400, 57142800, 57142800, 57142800, 399999600, 399999600, 79999920, 1230768, 30769200, 92307600, 1199998800, 22799977200, 22799977200, 1390798609200, 695399304600
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Crossrefs

Cf. A018804, A272718, A370895, A379363 (numerators), A379366.

Programs

  • Mathematica
    f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/pillai[n], {n, 1, 50}]]]
  • PARI
    pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / pillai(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A018804(k)).

A379365 Numerators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 2, 13, 89, 307, 283, 4039, 761, 5639, 16189, 17125, 10396, 54437, 52862, 54227, 847157, 9646327, 9474727, 361375699, 355820149, 27844153, 27355753, 28039513, 27731821, 366667513, 72266837, 219763471, 217455781, 4211659759, 835576403, 51882159671, 25692722941
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Examples

			Fractions begin with 1, 2/3, 13/15, 89/120, 307/360, 283/360, 4039/4680, 761/936, 5639/6552, 16189/19656, 17125/19656, 10396/12285, ...
		

Crossrefs

Cf. A018804, A272718, A370895, A379363, A379366 (denominators).

Programs

  • Mathematica
    f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/pillai[n], {n, 1, 50}]]]
  • PARI
    pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / pillai(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A018804(k)).
a(n)/A379366(n) = Sum_{j=0..N} D_j/log(n)^(j-1/2) + O(1/log(n)^(N+1/2), for any integer N >= 1, where D_j are constants, and in particular D_0 = (1/(4*log(2)-2)-1) * (2/sqrt(Pi)) * Product_{p prime} (sqrt(1-1/p) * Sum_{k>=1} 1/A018804(p^k)) = 0.38291621042855537524... .

A379366 Denominators of the partial alternating sums of the reciprocals of Pillai's arithmetical function (A018804).

Original entry on oeis.org

1, 3, 15, 120, 360, 360, 4680, 936, 6552, 19656, 19656, 12285, 61425, 61425, 61425, 982800, 10810800, 10810800, 399999600, 399999600, 30769200, 30769200, 30769200, 30769200, 399999600, 79999920, 239999760, 239999760, 4559995440, 911999088, 55631944368, 27815972184
Offset: 1

Views

Author

Amiram Eldar, Dec 21 2024

Keywords

Crossrefs

Cf. A018804, A272718, A370895, A379364, A379365 (numerators).

Programs

  • Mathematica
    f[p_, e_] := (e*(p-1)/p + 1)*p^e; pillai[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[(-1)^(n+1)/pillai[n], {n, 1, 50}]]]
  • PARI
    pillai(n) = {my(f=factor(n)); prod(i=1, #f~, (f[i,2]*(f[i,1]-1)/f[i,1] + 1)*f[i,1]^f[i,2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / pillai(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A018804(k)).

A348493 a(n) = A003415(n) / gcd(A003415(n), A018804(n)), where A003415 is the arithmetic derivative and A018804 is Pillai's arithmetical function.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 2, 7, 1, 2, 1, 3, 8, 2, 1, 1, 1, 1, 2, 13, 1, 11, 2, 1, 1, 4, 1, 31, 1, 5, 2, 19, 4, 5, 1, 7, 16, 17, 1, 41, 1, 2, 13, 5, 1, 7, 2, 3, 4, 7, 1, 1, 16, 23, 22, 31, 1, 23, 1, 11, 17, 3, 2, 61, 1, 3, 26, 59, 1, 13, 1, 13, 11, 10, 6, 71, 1, 11, 4, 43, 1, 31, 2, 3, 32, 1, 1, 41, 4, 4, 34, 49, 8
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {Total@ GCD[#, Range[#]], If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]]} &, 95] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
    A348493(n) = { my(u=A003415(n)); (u/gcd(u,A018804(n))); };

Formula

a(n) = A003415(n) / A348492(n).

A382872 For n >= 1, a(n) is the number of divisors of the Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n) (A018804).

Original entry on oeis.org

1, 2, 2, 4, 3, 4, 2, 6, 4, 4, 4, 8, 3, 4, 6, 10, 4, 6, 2, 12, 4, 6, 6, 9, 4, 6, 5, 8, 4, 8, 2, 10, 8, 6, 6, 16, 2, 4, 4, 18, 5, 8, 4, 16, 8, 8, 4, 20, 4, 8, 8, 12, 8, 6, 8, 12, 4, 6, 6, 24, 3, 4, 8, 9, 9, 12, 4, 16, 9, 8, 4, 24, 4, 4, 6, 8, 8, 8, 2, 20
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 07 2025

Keywords

Comments

a(n) is from A005408 for n from {1, 5, 13, 24, 27, 41, 61, 64, 65, 69, 99, 113, ...}.
a(n) is from A065091 for n from {5, 13, 27, 41, 61, 135, 181, 205, 313, 421, ...}.

Examples

			For n = 5, a(5) = A000005(A018804(5)) = A000005(9) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local i; numtheory:-tau(add(igcd(i,n),i=1..n)) end proc:
    map(f, [$1..100]); # Robert Israel, May 07 2025
  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := DivisorSigma[0, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Apr 07 2025 *)
  • PARI
    a(n) = numdiv(sumdiv(n, d, n*eulerphi(d)/d)); \\ Michel Marcus, Apr 07 2025

Formula

a(n) = A000005(A018804(n)).
a(A005382(n)) = 2.
a(A067756(n)) = 3.
a(A277201(n)) = 5.
Previous Showing 11-20 of 165 results. Next