cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 165 results. Next

A145388 Sum of (k,n)* for k=1,2,...,n, where (k,n)* is the greatest divisor of k which is a unitary divisor of n.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 13, 15, 17, 27, 21, 35, 25, 39, 45, 31, 33, 51, 37, 63, 65, 63, 45, 75, 49, 75, 53, 91, 57, 135, 61, 63, 105, 99, 117, 119, 73, 111, 125, 135, 81, 195, 85, 147, 153, 135, 93, 155, 97, 147, 165, 175, 105, 159
Offset: 1

Views

Author

Laszlo Toth, Oct 10 2008

Keywords

Comments

A unitary analog of Pillai's function A018804; another unitary analog of A018804 is A089912.
The sequence is the row sums of the following triangle of (k,n)* with rows n and columns 1 <= k <= n (_R. J. Mathar, Jun 01 2011):
1;
1, 2;
1, 1, 3;
1, 1, 1, 4;
1, 1, 1, 1, 5;
1, 2, 3, 2, 1, 6;
1, 1, 1, 1, 1, 1, 7;
1, 1, 1, 1, 1, 1, 1, 8;
1, 1, 1, 1, 1, 1, 1, 1, 9;
1, 2, 1, 2, 5, 2, 1, 2, 1, 10;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11;
1, 1, 3, 4, 1, 3, 1, 4, 3, 1, 1, 12;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13;
1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 14;
Sum_{k<=x} a(n) = Ax^2 log x + O(x^2) with A = Product(1 - 1/(p+1)^2) * 3/Pi^2 = 0.23584030... where the product is over the primes. That is, the average value of a(n) is A n log n. - Charles R Greathouse IV, Mar 21 2012

Crossrefs

Programs

  • Maple
    A145388 := proc(n) option remember; local pf,p ; if n = 1 then 1; else pf := ifactors(n)[2] ; if nops(pf) = 1 then 2*n-1 ; else mul(procname(op(1,p)^op(2,p)),p=pf) ; end if; end if; end proc:
    seq(A145388(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    f[p_, e_] := 2*p^e - 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 29 2020 *)
  • PARI
    a(n)=n=factor(n);prod(i=1,#n[,1],2*n[i,1]^n[i,2]-1) \\ Charles R Greathouse IV, Mar 21 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A145388(n): return prod((p**e<<1)-1 for p,e in factorint(n).items()) # Chai Wah Wu, Feb 13 2025

Formula

Multiplicative: a(p^e) = 2*p^e - 1 for every prime power p^e.
a(n) = Sum_{k=1..n} A034444(n/gcd(n,k)) = Sum_{d|n} A000010(d) * A034444(d). - Daniel Suteu, May 26 2019
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * uphi(n/d), where uphi is A047994. - Amiram Eldar, May 29 2020
a(n) = Sum_{d|n} abs(A023900(d))*n/d. Verified for the first 10000 terms. - Mats Granvik, Feb 13 2021

A348981 a(n) = Sum_{d|n} phi(n/d) * A322582(d), where A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 12, 7, 11, 1, 24, 1, 15, 13, 32, 1, 35, 1, 40, 17, 23, 1, 68, 13, 27, 35, 56, 1, 71, 1, 80, 25, 35, 21, 112, 1, 39, 29, 116, 1, 99, 1, 88, 77, 47, 1, 176, 19, 91, 37, 104, 1, 151, 29, 164, 41, 59, 1, 232, 1, 63, 105, 192, 33, 155, 1, 136, 49, 159, 1, 308, 1, 75, 117, 152, 33, 183, 1, 304, 151
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A322582.
Möbius transform of A348980.

Crossrefs

Cf. A000010, A003958, A008683, A018804, A322582, A348980 (Inverse Möbius transform), A348981, A348982, A348983, A349131.
Cf. also A347131, A349141.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#]) * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348981(n) = sumdiv(n,d,A322582(n/d)*eulerphi(d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A322582(d).
a(n) = Sum_{d|n} A008683(n/d) * A348980(d).
a(n) = Sum_{k=1..n} A322582(gcd(n,k)).
For all n >= 1, a(n) <= A347131(n) <= A349141(n).
a(n) = A018804(n) - A349131(n). - Antti Karttunen, Nov 14 2021

A349131 a(n) = Sum_{d|n} phi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and phi is Euler totient function.

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 12, 8, 14, 16, 20, 16, 24, 24, 32, 16, 32, 28, 36, 32, 48, 40, 44, 32, 52, 48, 46, 48, 56, 64, 60, 32, 80, 64, 96, 56, 72, 72, 96, 64, 80, 96, 84, 80, 112, 88, 92, 64, 114, 104, 128, 96, 104, 92, 160, 96, 144, 112, 116, 128, 120, 120, 168, 64, 192, 160, 132, 128, 176, 192, 140, 112, 144, 144, 208
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with Euler totient function phi, A000010.
Möbius transform of A349130.

Crossrefs

Cf. A000010, A003958, A018804, A348981, A349130 (inverse Möbius transform), A349132, A349171.

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*p^e - (p - 2)*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349131(n) = sumdiv(n,d,eulerphi(d)*A003958(n/d));

Formula

a(n) = Sum_{d|n} A000010(d) * A003958(n/d).
a(n) = Sum_{d|n} A008683(d) * A349130(n/d).
a(n) = Sum_{k=1..n} A003958(gcd(n, k)).
a(n) = A018804(n) - A348981(n).
For all n >= 1, a(n) <= A349171(n).
Multiplicative with a(p^e) = (p-1)*p^e - (p-2)*(p-1)^e. - Amiram Eldar, Nov 09 2021
Dirichlet g.f.: (zeta(s-1)/zeta(s)) / Product_{p prime} (1 - 1/p^(s-1) + 1/p^s). - Amiram Eldar, Dec 24 2023

A349141 a(n) = Sum_{d|n} phi(n/d) * A348507(d), where A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 6, 1, 9, 1, 26, 9, 13, 1, 44, 1, 17, 15, 98, 1, 57, 1, 68, 19, 25, 1, 176, 15, 29, 57, 92, 1, 105, 1, 342, 27, 37, 23, 252, 1, 41, 31, 280, 1, 141, 1, 140, 111, 49, 1, 636, 21, 125, 39, 164, 1, 309, 31, 384, 43, 61, 1, 480, 1, 65, 147, 1138, 35, 213, 1, 212, 51, 209, 1, 960, 1, 77, 155, 236, 35, 249, 1, 1028
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of Euler phi (A000010) with A348507.
Möbius transform of A349140.

Crossrefs

Cf. A000010, A003959, A008683, A018804, A348507, A349140 (inverse Möbius transform), A349142, A349143, A349171.
Cf. also A347131, A348981.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #) * EulerPhi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349141(n) = sumdiv(n,d,eulerphi(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A000010(n/d) * A348507(d).
a(n) = Sum_{d|n} A008683(n/d) * A349140(d).
a(n) = Sum_{k=1..n} A348507(gcd(n,k)).
For all n >= 1, a(n) >= A347131(n) >= A348981(n).
a(n) = A349171(n) - A018804(n). - Antti Karttunen, Nov 14 2021

A349171 a(n) = Sum_{d|n} phi(d) * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1), and phi is Euler totient function.

Original entry on oeis.org

1, 4, 6, 14, 10, 24, 14, 46, 30, 40, 22, 84, 26, 56, 60, 146, 34, 120, 38, 140, 84, 88, 46, 276, 80, 104, 138, 196, 58, 240, 62, 454, 132, 136, 140, 420, 74, 152, 156, 460, 82, 336, 86, 308, 300, 184, 94, 876, 154, 320, 204, 364, 106, 552, 220, 644, 228, 232, 118, 840, 122, 248, 420, 1394, 260, 528, 134, 476, 276
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003959 with Euler totient function phi, A000010.
Möbius transform of A349170.

Crossrefs

Cf. A000010, A003959, A018804, A349141, A349170 (inverse Möbius transform), A349172, A349131.

Programs

  • Mathematica
    f[p_, e_] := p*(p + 1)^e - (p - 1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349171(n) = sumdiv(n,d,eulerphi(d)*A003959(n/d));

Formula

a(n) = Sum_{d|n} A000010(d) * A003959(n/d).
a(n) = Sum_{d|n} A008683(d) * A349170(n/d).
a(n) = Sum_{k=1..n} A003959(gcd(n, k)).
a(n) = A018804(n) + A349141(n).
For all n >= 1, a(n) >= A349131(n).
Multiplicative with a(p^e) = p*(p+1)^e - (p-1)*p^e. - Amiram Eldar, Nov 09 2021

A360428 Inverse Mobius transformation of A338164.

Original entry on oeis.org

1, 7, 17, 40, 49, 119, 97, 208, 225, 343, 241, 680, 337, 679, 833, 1024, 577, 1575, 721, 1960, 1649, 1687, 1057, 3536, 1825, 2359, 2673, 3880, 1681, 5831, 1921, 4864, 4097, 4039, 4753, 9000, 2737, 5047, 5729, 10192, 3361, 11543, 3697, 9640, 11025, 7399, 4417, 17408, 7105, 12775
Offset: 1

Views

Author

R. J. Mathar, Feb 07 2023

Keywords

Crossrefs

Programs

  • Maple
    A360428 := proc(n)
        add(numtheory[mobius](n/d)*numtheory[tau](d)*d^2,d=numtheory[divisors](n)) ;
    end proc:
  • Mathematica
    f[p_, e_] := (e + 1 - e/p^2)*p^(2*e); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 09 2023 *)

Formula

a(n) = Sum_{d|n} A008683(n/d)*A000005(d)*d^2.
Dirichlet convolution of A034714 and A008683.
Dirichlet g.f.: zeta^2(s-2)/zeta(s).
From Amiram Eldar, Feb 09 2023: (Start)
Multiplicative with a(p^e) = (e + 1 - e/p^2)*p^(2*e).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1/3 - zeta'(3)/zeta(3)) * n^3 / (3*zeta(3)), where gamma is Euler's constant (A001620). (End)
From Peter Bala, Jan 16 2024: (Start)
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)^2. Cf. A069097.
a(n) = Sum_{d divides n} d^2 * J_2(n/d), where J_2(n) = A007434(n). (End)

A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
  • PARI
    up_to = 65537;
    prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1,up_to, vmemo[n] = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(dA299152 = prepareA299151perA299152(up_to);
    A299151perA299152(n) = v299151perA299152[n];
    \\ Or without memoization as:
    A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(dA299151perA299152(d)*A299151perA299152(n/d),0)))/2);
    A299152(n) = denominator(A299151perA299152(n)); \\ Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A327251 Expansion of Sum_{k>=1} psi(k) * x^k / (1 - x^k)^2, where psi = A001615.

Original entry on oeis.org

1, 5, 7, 16, 11, 35, 15, 44, 33, 55, 23, 112, 27, 75, 77, 112, 35, 165, 39, 176, 105, 115, 47, 308, 85, 135, 135, 240, 59, 385, 63, 272, 161, 175, 165, 528, 75, 195, 189, 484, 83, 525, 87, 368, 363, 235, 95, 784, 161, 425, 245, 432, 107, 675, 253, 660, 273
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Comments

Inverse Moebius transform of A322577.
Dirichlet convolution of A001615 with A000027.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := p^(e - 1)*((p + 1)*e + p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    mypsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = sumdiv(n, d, mypsi(n/d)*d); \\ Michel Marcus, Sep 15 2019

Formula

a(n) = Sum_{d|n} psi(n/d) * d.
a(p) = 2*p + 1, where p is prime.
Multiplicative with a(p^e) = p^(e-1)*((p+1)*e + p). - Antti Karttunen, Aug 24 2021

A349569 Dirichlet convolution of A000027 (identity function) with A349452 (Dirichlet inverse of A011782, 2^(n-1)).

Original entry on oeis.org

1, 0, -1, -4, -11, -24, -57, -112, -243, -480, -1013, -1964, -4083, -8064, -16309, -32496, -65519, -130440, -262125, -523156, -1048263, -2095104, -4194281, -8383760, -16777015, -33546240, -67107609, -134200860, -268435427, -536835096, -1073741793, -2147417216, -4294962187, -8589803520, -17179867533, -34359463812
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution with A034729 gives sigma, A000203, and convolution with A034738 gives A018804.

Crossrefs

Cf. A000027, A011782, A349452, A349570 (Dirichlet inverse).

Programs

  • Mathematica
    s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#]*2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, # * s[n/#] &]; Array[a, 36] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A011782(n) = (2^(n-1));
    memoA349452 = Map();
    A349452(n) = if(1==n,1,my(v); if(mapisdefined(memoA349452,n,&v), v, v = -sumdiv(n,d,if(dA011782(n/d)*A349452(d),0)); mapput(memoA349452,n,v); (v)));
    A349569(n) = sumdiv(n,d,d * A349452(n/d));

Formula

a(n) = Sum_{d|n} d * A349452(n/d).

A368742 a(n) = Sum_{k = 1..n} gcd(6*k, n).

Original entry on oeis.org

1, 4, 9, 12, 9, 36, 13, 32, 45, 36, 21, 108, 25, 52, 81, 80, 33, 180, 37, 108, 117, 84, 45, 288, 65, 100, 189, 156, 57, 324, 61, 192, 189, 132, 117, 540, 73, 148, 225, 288, 81, 468, 85, 252, 405, 180, 93, 720, 133, 260, 297, 300, 105, 756, 189, 416, 333, 228, 117, 972, 121, 244, 585, 448
Offset: 1

Views

Author

Peter Bala, Jan 08 2024

Keywords

Comments

a(n) equals the number of solutions to the congruence 6*x*y == 0 (mod n) for 1 <= x, y <= n.

Examples

			a(4) = 12: each of the 16 pairs (x, y), 1 <= x, y <= 4, is a solution to the congruence 6*x*y == 0 (mod 4) except for the 4 pairs (1, 1) , (1, 3), (3, 1) and (3, 3) with both x and y odd.
		

Crossrefs

Programs

  • Maple
    seq(add(gcd(6*k, n), k = 1..n), n = 1..70);
    # alternative faster program for large n
    with(numtheory): seq(add(gcd(6,d)*phi(d)*n/d, d in divisors(n)), n = 1..70);
  • Mathematica
    Table[Sum[GCD[6*k, n], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 12 2024 *)

Formula

a(6*n) = 36*A018804(n); a(6*n+2) = 4*A018804(3*n+1);
a(6*n+3) = 9*A018804(2*n+1); a(6*n+4) = 4*A018804(3*n+2);
a(6*n+r) = A018804(6*n+r) for r = 1 and 5.
Define a_m(n) = Sum_{k = 1..n} gcd(m*k, n). Then
a(n) = a_2(n) * a_3(n) / a_1(n) = A344372(n) * A368737(n) / A018804(n).
a(n) = Sum_{d divides n} gcd(6, d)*phi(d)*n/d, where phi(n) = A000010(n).
Multiplicative: a(2^k) = (k + 1)*2^k, a(3^k) = (2*k + 1)*3^k, and for prime p > 3, a(p^k) = (k + 1)*p^k - k*p^(k-1).
Dirichlet g.f.: ( 1 + 3/3^s)/((1 - 1/2^s)*(1 - 1/3^s)) * zeta(s-1)^2/zeta(s).
Sum_{k=1..n} a(k) ~ n^2 * (6*log(n) - 3 + 12*gamma - 2*log(2) - 9*log(3)/4 - 36*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024
Previous Showing 71-80 of 165 results. Next