cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 112 results. Next

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A343382 Number of strict integer partitions of n with either (1) no part dividing all the others or (2) no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 9, 13, 18, 21, 26, 34, 38, 48, 57, 67, 81, 99, 110, 133, 157, 183, 211, 250, 282, 330, 380, 437, 502, 575, 648, 748, 852, 967, 1095, 1250, 1405, 1597, 1801, 2029, 2287, 2579, 2883, 3245, 3638, 4077, 4557, 5107, 5691, 6356
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either (1) empty, or (2) have smallest part not dividing all the others, or (3) have greatest part not divisible by all the others.

Examples

			The a(0) = 1 through a(11) = 9 partitions (empty columns indicated by dots):
  ()  .  .  .  .  (3,2)  (3,2,1)  (4,3)  (5,3)    (5,4)    (6,4)      (6,5)
                                  (5,2)  (4,3,1)  (7,2)    (7,3)      (7,4)
                                         (5,2,1)  (4,3,2)  (5,3,2)    (8,3)
                                                  (5,3,1)  (5,4,1)    (9,2)
                                                           (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,3,2)
                                                                      (6,4,1)
                                                                      (7,3,1)
                                                                      (5,3,2,1)
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343346 (Heinz numbers: A343343).
The second condition alone gives A343377.
The strict complement is A343378.
The version for "and" instead of "or" is A343379.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A371737 Number of quanimous strict integer partitions of n, meaning there is more than one set partition with all equal block-sums.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 4, 0, 7, 1, 9, 0, 16, 0, 21, 4, 32, 0, 45, 0, 63, 13, 84, 0, 126, 0, 158, 36, 220, 0, 303, 0, 393, 93, 511, 0, 708, 0, 881, 229, 1156, 0, 1539, 0, 1925, 516, 2445, 0, 3233, 6, 3952, 1134, 5019, 0, 6497
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.
Conjecture: (1) Positions of 0's are A327782. (2) Positions of terms > 0 are A368459.

Examples

			The a(0) = 0 through a(14) = 7 strict partitions:
  .  .  .  .  .  .  (321)  .  (431)  .  (532)   .  (642)   .  (743)
                                        (541)      (651)      (752)
                                        (4321)     (5421)     (761)
                                                   (6321)     (5432)
                                                              (6431)
                                                              (6521)
                                                              (7421)
		

Crossrefs

The non-strict "bi-" version is A002219, ranks A357976.
The "bi-" version is A237258, ranks A357854, complement A321142 or A371794.
The non-strict version is A321452, ranks A321454.
The complement is A371736, non-strict A321451, ranks A321453.
The non-strict "bi-" complement is A371795, ranks A371731.
A371783 counts k-quanimous partitions.
A371791 counts biquanimous sets, complement A371792.
A371796 counts quanimous sets, complement A371789.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Select[sps[#], SameQ@@Total/@#&]]>1&]],{n,0,30}]

A326849 Number of integer partitions of n whose length times maximum is a multiple of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 6, 2, 5, 5, 10, 2, 19, 2, 18, 26, 24, 2, 55, 2, 87, 82, 60, 2, 207, 86, 106, 192, 363, 2, 668, 2, 527, 616, 304, 928, 1827, 2, 498, 1518, 3229, 2, 4294, 2, 4445, 6307, 1266, 2, 11560, 3629, 8280, 7802, 13633, 2, 19120, 18938, 31385, 16618, 4584
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A326848.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  1   2    3     4      5       6        7         8          9
      11   111   22     11111   33       1111111   44         333
                 1111           222                2222       621
                                411                4211       321111
                                3111               11111111   111111111
                                111111
For example, (4,1,1) is such a partition because its length times maximum is 3 * 4 = 12, which is a multiple of 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[Max[#]*Length[#],n]&]]],{n,0,30}]

A083711 a(n) = A083710(n) - A000041(n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2003

Keywords

Comments

Number of integer partitions of n with no 1's with a part dividing all the others. If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 18 2021

Examples

			From _Gus Wiseman_, Apr 18 2021: (Start)
The a(6) = 4 through a(12) = 13 partitions:
  (6)      (7)  (8)        (9)      (10)         (11)  (12)
  (3,3)         (4,4)      (6,3)    (5,5)              (6,6)
  (4,2)         (6,2)      (3,3,3)  (8,2)              (8,4)
  (2,2,2)       (4,2,2)             (4,4,2)            (9,3)
                (2,2,2,2)           (6,2,2)            (10,2)
                                    (4,2,2,2)          (4,4,4)
                                    (2,2,2,2,2)        (6,3,3)
                                                       (6,4,2)
                                                       (8,2,2)
                                                       (3,3,3,3)
                                                       (4,4,2,2)
                                                       (6,2,2,2)
                                                       (4,2,2,2,2)
                                                       (2,2,2,2,2,2)
(End)
		

References

  • L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.

Crossrefs

Allowing 1's gives A083710.
The strict case is A098965.
The complement (except also without 1's) is counted by A338470.
The dual version is A339619.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003
    # second Maple program:
    a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})):
    seq(a(n), n=1..69);  # Alois P. Heinz, Feb 15 2023
  • Mathematica
    a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)

Formula

a(n) = Sum_{ d|n, dA000041(d-1).

Extensions

More terms from James Sellers, Jun 21 2003

A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n.

Original entry on oeis.org

1, 2, 3, 10, 5, 36, 7, 120, 45, 100, 11, 936, 13, 196, 225, 3876, 17, 3078, 19, 4200, 441, 484, 23, 62400, 325, 676, 3654, 11368, 29, 27000, 31, 376992, 1089, 1156, 1225, 443556, 37, 1444, 1521, 459200, 41, 74088, 43, 43560, 46575, 2116, 47, 11995200, 1225
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2009

Keywords

Comments

Also the number of length n - 1 chains of divisors of n. - Gus Wiseman, May 07 2021

Examples

			Successive Dirichlet self-convolutions of the all 1's sequence begin:
(1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012)
1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005)
1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425)
1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426)
1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200)
1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695)
1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217)
1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218)
1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219)
1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220)
1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221)
1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306)
...
where the main diagonal forms this sequence.
From _Gus Wiseman_, May 07 2021: (Start)
The a(1) = 1 through a(5) = 5 chains of divisors:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)
      (2)  (3/1)  (2/1/1)  (5/1/1/1)
           (3/3)  (2/2/1)  (5/5/1/1)
                  (2/2/2)  (5/5/5/1)
                  (4/1/1)  (5/5/5/5)
                  (4/2/1)
                  (4/2/2)
                  (4/4/1)
                  (4/4/2)
                  (4/4/4)
(End)
		

Crossrefs

Main diagonal of A077592.
Diagonal n = k + 1 of the array A334997.
The version counting all multisets of divisors (not just chains) is A343935.
A000005 counts divisors.
A001055 counts factorizations (strict: A045778, ordered: A074206).
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts nonempty strict chains of divisors of n.
A251683/A334996 count strict nonempty length-k divisor chains from n to 1.
A337255 counts strict length-k chains of divisors starting with n.
A339564 counts factorizations with a selected factor.
A343662 counts strict length-k chains of divisors (row sums: A337256).
Cf. A060690.

Programs

  • Mathematica
    Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* Enrique Pérez Herrero, Dec 25 2013 *)
  • PARI
    {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))}
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # Chai Wah Wu, Jul 05 2024

Formula

a(p) = p for prime p.
a(n) = n^k when n is the product of k distinct primes (conjecture).
a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence.
a(2^n) = A060690(n). - Alois P. Heinz, Jun 12 2024

A343377 Number of strict integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 9, 13, 18, 21, 26, 32, 38, 47, 57, 66, 80, 95, 110, 132, 157, 181, 211, 246, 282, 327, 379, 435, 500, 570, 648, 743, 849, 963, 1094, 1241, 1404, 1592, 1799, 2025, 2282, 2568, 2882, 3239, 3634, 4066, 4554, 5094, 5686, 6346
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are empty or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(12) = 9 partitions:
  (3,2)  (3,2,1)  (4,3)  (5,3)    (5,4)    (6,4)      (6,5)      (7,5)
                  (5,2)  (4,3,1)  (7,2)    (7,3)      (7,4)      (5,4,3)
                         (5,2,1)  (4,3,2)  (5,3,2)    (8,3)      (6,4,2)
                                  (5,3,1)  (5,4,1)    (9,2)      (6,5,1)
                                           (7,2,1)    (5,4,2)    (7,3,2)
                                           (4,3,2,1)  (6,4,1)    (7,4,1)
                                                      (7,3,1)    (8,3,1)
                                                      (5,3,2,1)  (9,2,1)
                                                                 (5,4,2,1)
		

Crossrefs

The dual strict complement is A097986.
The dual version is A341450.
The non-strict version is A343341 (Heinz numbers: A343337).
The strict complement is counted by A343347.
The case with smallest part not divisible by all the others is A343379.
The case with smallest part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343379 Number of strict integer partitions of n with no part dividing or divisible by all the other parts.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 3, 9, 9, 12, 12, 18, 18, 27, 27, 36, 41, 51, 51, 73, 80, 96, 105, 132, 137, 177, 188, 230, 253, 303, 320, 398, 431, 508, 550, 659, 705, 847, 913, 1063, 1165, 1359, 1452, 1716, 1856, 2134, 2329, 2688, 2894, 3345, 3622, 4133
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either empty, or (1) have smallest part not dividing all the others and (2) have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(13) = 9 partitions (empty column indicated by dot):
  (3,2)  .  (4,3)  (5,3)  (5,4)    (6,4)    (6,5)    (7,5)    (7,6)
            (5,2)         (7,2)    (7,3)    (7,4)    (5,4,3)  (8,5)
                          (4,3,2)  (5,3,2)  (8,3)    (7,3,2)  (9,4)
                                            (9,2)             (10,3)
                                            (5,4,2)           (11,2)
                                                              (6,4,3)
                                                              (6,5,2)
                                                              (7,4,2)
                                                              (8,3,2)
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343342 (Heinz numbers: A343338).
The second condition alone gives A343377.
The opposite version is A343378.
The half-opposite versions are A343380 and A343381.
The version for "or" instead of "and" is A343382.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

Formula

The Heinz numbers for the non-strict version are A343338 = A342193 /\ A343337.

A211110 Number of partitions of n into divisors > 1 of n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 12, 1, 3, 3, 10, 1, 15, 1, 16, 3, 3, 1, 80, 2, 3, 5, 20, 1, 94, 1, 36, 3, 3, 3, 280, 1, 3, 3, 158, 1, 154, 1, 28, 25, 3, 1, 1076, 2, 29, 3, 32, 1, 255, 3, 262, 3, 3, 1, 7026, 1, 3, 32, 202, 3, 321, 1, 40, 3, 302, 1, 12072, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2012

Keywords

Comments

a(A000040(n)) = 1; a(A002808(n)) > 1;
a(A001248(n)) = 2; a(A080257(n)) > 2;
a(A006881(n)) = 3; a(A033942(n)) > 3.

Examples

			a(10) = #{10, 5+5, 2+2+2+2+2} = 3;
a(11) = #{11} = 1;
a(12) = #{12, 6+6, 6+4+2, 6+3+3, 6+2+2+2, 4+4+4, 4+4+2+2, 4+3+3+2, 4+2+2+2+2, 3+3+3+3, 3+3+2+2+2, 6x2} = 12;
a(13) = #{13} = 1;
a(14) = #{14, 7+7, 2+2+2+2+2+2+2} = 3;
a(15) = #{15, 5+5+5, 3+3+3+3+3} = 3.
		

Crossrefs

Programs

  • Haskell
    a211110 n = p (tail $ a027750_row n) n where
       p _      0 = 1
       p []     _ = 0
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    a[n_] := Module[{b, l}, l = Rest[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 30 2015, after Alois P. Heinz *)
  • PARI
    isokp(p, n) = {for (k=1, #p, if ((p[k]==1) || (n % p[k]), return (0));); return (1);}
    a(n) = {my(nb = 0); forpart(p=n, if (isokp(p,n), nb++)); nb;} \\ Michel Marcus, Jun 30 2015

A371736 Number of non-quanimous strict integer partitions of n, meaning no set partition with more than one block has all equal block-sums.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 12, 11, 18, 15, 26, 23, 38, 30, 54, 43, 72, 57, 104, 77, 142, 102, 179, 138, 256, 170, 340, 232, 412, 292, 585, 365, 760, 471, 889, 602, 1260, 718, 1610, 935, 1819, 1148, 2590, 1371, 3264, 1733, 3581, 2137, 5120, 2485, 6372
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A finite multiset of numbers is defined to be quanimous iff it can be partitioned into two or more multisets with equal sums. Quanimous partitions are counted by A321452 and ranked by A321454.

Examples

			The a(0) = 1 through a(9) = 8 strict partitions:
  ()  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
                (21)  (31)  (32)  (42)  (43)   (53)   (54)
                            (41)  (51)  (52)   (62)   (63)
                                        (61)   (71)   (72)
                                        (421)  (521)  (81)
                                                      (432)
                                                      (531)
                                                      (621)
		

Crossrefs

The non-strict "bi-" complement is A002219, ranks A357976.
The "bi-" version is A321142 or A371794, complement A237258, ranks A357854.
The non-strict version is A321451, ranks A321453.
The complement is A371737, non-strict A321452, ranks A321454.
The non-strict "bi-" version is A371795, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371792 counts non-biquanimous sets, complement A371791.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Select[sps[#], SameQ@@Total/@#&]]==1&]],{n,0,30}]

Formula

a(prime(k)) = A064688(k) = A000009(A000040(k)).
Previous Showing 31-40 of 112 results. Next