cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A019916 Decimal expansion of tan(Pi/10) (angle of 18 degrees).

Original entry on oeis.org

3, 2, 4, 9, 1, 9, 6, 9, 6, 2, 3, 2, 9, 0, 6, 3, 2, 6, 1, 5, 5, 8, 7, 1, 4, 1, 2, 2, 1, 5, 1, 3, 4, 4, 6, 4, 9, 5, 4, 9, 0, 3, 4, 7, 1, 5, 2, 1, 4, 7, 5, 1, 0, 0, 3, 0, 7, 8, 0, 4, 7, 1, 9, 1, 3, 6, 6, 7, 2, 9, 0, 0, 9, 6, 0, 7, 4, 4, 9, 4, 8, 3, 2, 2, 6, 8, 7, 7, 3, 5, 4, 4, 6, 9, 6, 5, 0, 5, 0
Offset: 0

Views

Author

Keywords

Comments

In a regular pentagon inscribed in a unit circle this is the cube of the length of the side divided by 5: (1/5)*(sqrt(3 - phi))^3 with phi from A001622. - Wolfdieter Lang, Jan 08 2018
Quartic number of denominator 5 and minimal polynomial 5x^4 - 10x^2 + 1. - Charles R Greathouse IV, May 13 2019
The other positive root of the minimal polynomial is A019952. - R. J. Mathar, Sep 06 2025

Examples

			0.3249196962329063261558714122151344649549034715214751003078047191...
		

Crossrefs

Cf. A001622, A019827 (sin(Pi/10)), A019881 (cos(Pi/10)).

Programs

Formula

Equals A019827/A019881 = 1/A019970 = 1/sqrt(5+2*sqrt(5)). - R. J. Mathar, Jul 26 2010
Equals tan((phi - 1)/sqrt(2 + phi)) = (1/5)*(sqrt(3 - phi))^3 = (3 - phi)*sqrt(3 - phi)/5 = sqrt(7 - 4*phi)/(2*phi - 1), with phi from A001622. - Wolfdieter Lang, Jan 08 2018
Equals Product_{k>=0} ((5*k + 1)/(5*k + 4))^(-1)^(k) = Product_{k>=0} A090771(k)/A090773(k). - Antonio Graciá Llorente, Mar 24 2024
Equals A019845/(1+A019863). - R. J. Mathar, Sep 06 2025

A244593 Decimal expansion of z_c = phi^5 (where phi is the golden ratio), a lattice statistics constant which is the exact value of the critical activity of the hard hexagon model.

Original entry on oeis.org

1, 1, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7, 4, 2
Offset: 2

Views

Author

Keywords

Comments

Essentially the same digit sequence as A239798, A019863 and A019827. - R. J. Mathar, Jul 03 2014
The minimal polynomial of this constant is x^2 - 11*x - 1. - Joerg Arndt, Jan 01 2017

Examples

			11.09016994374947424102293417182819058860154589902881431067724311352630...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 138-139.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 83.

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^5, 10, 103] // First
  • PARI
    (5*sqrt(5)+11)/2 \\ Charles R Greathouse IV, Aug 10 2016

Formula

Equals ((1 + sqrt(5))/2)^5 = (11 + 5*sqrt(5))/2.
Equals phi^5 = 11 + 1/phi^5 = 3 + 5*phi, an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Nov 11 2023
Equals lim_{n->infinity} S(n, 5*(-1 + 2*phi))/ S(n-1, 5*(-1 + 2*phi)), with the S-Chebyshev polynomials (see A049310). - Wolfdieter Lang, Nov 15 2023

A280533 Decimal expansion of 14*sin(Pi/14).

Original entry on oeis.org

3, 1, 1, 5, 2, 9, 3, 0, 7, 5, 3, 8, 8, 4, 0, 1, 6, 6, 0, 0, 4, 4, 6, 3, 5, 9, 0, 2, 9, 5, 5, 1, 2, 6, 6, 3, 2, 5, 2, 8, 9, 7, 7, 9, 6, 2, 7, 0, 3, 6, 2, 9, 3, 7, 4, 3, 6, 7, 8, 1, 8, 2, 2, 2, 5, 6, 3, 8, 9, 7, 2, 4, 8, 3, 9, 9, 6, 6, 2, 4, 6, 7, 0, 4, 4, 1, 3, 4, 7, 3, 6, 5, 1, 3, 0, 2, 1, 3, 8, 8, 8, 8, 2, 4, 5
Offset: 1

Views

Author

Rick L. Shepherd, Jan 04 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 7-gon (heptagon) to its diameter (largest diagonal).

Examples

			3.115293075388401660044635902955126632528977962703629374367818222563897248...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280585 (n=8), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A232736.

Programs

  • Mathematica
    RealDigits[14*Sin[Pi/14], 10, 129][[1]] (* G. C. Greubel, Sep 20 2022 *)
  • PARI
    14*sin(Pi/14)
    
  • SageMath
    numerical_approx(14*sin(pi/14), digits=127) # G. C. Greubel, Sep 20 2022

Formula

Equals 14*A232736.

A019836 Decimal expansion of sine of 27 degrees.

Original entry on oeis.org

4, 5, 3, 9, 9, 0, 4, 9, 9, 7, 3, 9, 5, 4, 6, 7, 9, 1, 5, 6, 0, 4, 0, 8, 3, 6, 6, 3, 5, 7, 8, 7, 1, 1, 9, 8, 9, 8, 3, 0, 4, 7, 7, 0, 3, 0, 4, 9, 0, 2, 1, 5, 5, 6, 9, 8, 5, 3, 1, 6, 0, 0, 5, 8, 2, 2, 0, 2, 6, 7, 8, 4, 1, 3, 1, 8, 5, 2, 4, 2, 8, 7, 5, 4, 4, 7, 3, 4, 3, 9, 2, 2, 1, 9, 4, 6, 7, 9, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals cos(7*Pi/20). 2*this^2-1 = -A019845. - R. J. Mathar, Aug 29 2025

A232738 Decimal expansion of the imaginary part of I^(1/8), or sin(Pi/16).

Original entry on oeis.org

1, 9, 5, 0, 9, 0, 3, 2, 2, 0, 1, 6, 1, 2, 8, 2, 6, 7, 8, 4, 8, 2, 8, 4, 8, 6, 8, 4, 7, 7, 0, 2, 2, 2, 4, 0, 9, 2, 7, 6, 9, 1, 6, 1, 7, 7, 5, 1, 9, 5, 4, 8, 0, 7, 7, 5, 4, 5, 0, 2, 0, 8, 9, 4, 9, 4, 7, 6, 3, 3, 1, 8, 7, 8, 5, 9, 2, 4, 5, 8, 0, 2, 2, 5, 3, 2, 5, 3, 0, 9, 2, 3, 4, 0, 9, 0, 3, 8, 1, 7, 3, 0, 9, 9, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding real part is in A232737.

Examples

			0.195090322016128267848284868477022240927691617751954807754502...
		

Crossrefs

Cf. A232737 (real part), A010503 (imag(I^(1/2))), A182168 (imag(I^(1/4))), A019827 (imag(I^(1/5))), A019824 (imag(I^(1/6))), A232736 (imag(I^(1/7))), A019819 (imag(I^(1/9))), A019818 (imag(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2-sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
This^2 + A232737^2 = 1.
Smallest positive of the 8 real-valued roots of 128*x^8-256*x^6+160*x^4-32*x^2+1=0.
Equals A182168/(2*A232737). - R. J. Mathar, Sep 05 2025

A280725 Decimal expansion of 22*sin(Pi/22).

Original entry on oeis.org

3, 1, 3, 0, 9, 2, 6, 4, 4, 2, 0, 1, 2, 2, 7, 3, 0, 8, 9, 7, 6, 3, 4, 3, 8, 7, 0, 9, 5, 6, 0, 1, 3, 2, 7, 1, 3, 4, 0, 3, 1, 2, 9, 9, 4, 4, 7, 7, 1, 6, 5, 5, 2, 2, 5, 1, 9, 7, 8, 2, 1, 3, 0, 4, 2, 9, 8, 1, 2, 0, 7, 7, 1, 2, 1, 9, 2, 2, 1, 4, 8, 5, 8, 3, 9, 2, 1, 4, 7, 1, 6, 7, 2, 0, 7, 9, 7, 6, 1, 7, 0, 3, 6, 3, 3
Offset: 1

Views

Author

Rick L. Shepherd, Jan 07 2017

Keywords

Comments

The ratio of the perimeter of a regular 11-gon (hendecagon) to its diameter (largest diagonal).
Also least positive root of x^5 - 11x^4 - 484x^3 + 3993x^2 + 43923x - 161051.

Examples

			3.130926442012273089763438709560132713403129944771655225197821304298120771...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280819 (n=12).

Programs

  • Maple
    evalf(22*sin(Pi/22),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[22*Sin[Pi/22], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    22*sin(Pi/22)

A204188 Decimal expansion of sqrt(5)/4.

Original entry on oeis.org

5, 5, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7
Offset: 0

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Equals Product_{n>=1} (1 - 1/A000032(2^n)).
Essentially the same as A019863 and A019827. - R. J. Mathar, Jan 16 2012
The value is the distance of the W point of the Wigner-Seitz cell of the body-centered cubic lattice (that is the Brioullin zone of the face-centered cubic lattice) to its four nearest neighbors. Let the points of the simple cubic lattice be at (1,0,0), (0,1,0), (1,0,0) etc and the point in the cube center at (1/2, 1/2, 1/2). Then W is at (0, 1/4, 1/2) [or any of the 24 symmetry related positions like (0, 3/4, 1/2), (0, 1/2, 1/4) etc.], and the four lattice points closest to W are at (-1/2, 1/2, 1/2), (0,0,0), (1/2, 1/2, 1/2) and (0,0,1). - R. J. Mathar, Aug 19 2013

Examples

			0.5590169943749474241022934171828190588601545899028814310677243113526302...
		

Crossrefs

Programs

Formula

Equals sqrt(5)/4 = (-1 + 2*phi)/4, with the golden section phi from A001622.
Equals 5*A020837.

A280585 Decimal expansion of 8*sin(Pi/8).

Original entry on oeis.org

3, 0, 6, 1, 4, 6, 7, 4, 5, 8, 9, 2, 0, 7, 1, 8, 1, 7, 3, 8, 2, 7, 6, 7, 9, 8, 7, 2, 2, 4, 3, 1, 9, 0, 9, 3, 4, 0, 9, 0, 7, 5, 6, 4, 9, 9, 8, 8, 5, 0, 1, 6, 3, 3, 1, 4, 7, 0, 4, 0, 5, 0, 8, 5, 0, 2, 0, 3, 6, 8, 2, 7, 1, 6, 8, 0, 7, 1, 7, 5, 3, 7, 8, 9, 6, 1, 1, 0, 2, 8, 2, 7, 3, 8, 2, 6, 8, 3, 7, 7, 1, 8, 7, 3, 9
Offset: 1

Views

Author

Rick L. Shepherd, Jan 05 2017

Keywords

Comments

Decimal expansion of the ratio of the perimeter of a regular 8-gon (octagon) to its diameter (largest diagonal).

Examples

			3.061467458920718173827679872243190934090756499885016331470405085020368271...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280633 (n=9), A280725 (n=11), A280819 (n=12).
Cf. A182168.

Programs

  • Maple
    evalf(8*sin(Pi/8),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[8*Sin[Pi/8], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
  • PARI
    8*sin(Pi/8)

Formula

Equals 8*A182168.

A280633 Decimal expansion of 18*sin(Pi/18).

Original entry on oeis.org

3, 1, 2, 5, 6, 6, 7, 1, 9, 8, 0, 0, 4, 7, 4, 6, 2, 7, 9, 3, 3, 0, 8, 9, 9, 2, 8, 1, 8, 4, 7, 6, 6, 6, 3, 2, 8, 0, 0, 6, 7, 6, 2, 1, 8, 9, 3, 1, 3, 2, 4, 8, 9, 7, 0, 2, 5, 2, 3, 4, 4, 8, 0, 6, 3, 7, 7, 1, 8, 4, 7, 9, 8, 5, 0, 2, 2, 6, 5, 2, 3, 7, 5, 8, 7, 2, 9, 9, 0, 3, 6, 8, 3, 3, 1, 9, 2, 3, 3, 2, 2, 1, 5, 2, 6
Offset: 1

Views

Author

Rick L. Shepherd, Jan 06 2017

Keywords

Comments

The ratio of the perimeter of a regular 9-gon (nonagon) to its diameter (largest diagonal).
Also least positive root of x^3 - 243x + 729.

Examples

			3.125667198004746279330899281847666328006762189313248970252344806377184798...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7),A280585 (n=8), A280725(n=11), A280819 (n=12).

Programs

  • Maple
    evalf(18*sin(Pi/18),100); # Wesley Ivan Hurt, Feb 01 2017
  • Mathematica
    RealDigits[18*Sin[Pi/18],10,120][[1]] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    18*sin(Pi/18)

Formula

A280819 Decimal expansion of 12*sin(Pi/12).

Original entry on oeis.org

3, 1, 0, 5, 8, 2, 8, 5, 4, 1, 2, 3, 0, 2, 4, 9, 1, 4, 8, 1, 8, 6, 7, 8, 6, 0, 5, 1, 4, 8, 8, 5, 7, 9, 9, 4, 0, 1, 8, 8, 8, 2, 6, 8, 1, 5, 8, 3, 9, 1, 6, 6, 1, 6, 5, 7, 6, 8, 0, 3, 8, 4, 8, 7, 7, 8, 0, 6, 8, 3, 6, 9, 6, 9, 8, 5, 6, 2, 3, 9, 6, 3, 0, 6, 8, 4, 1, 5, 6, 9, 6, 3, 3, 0, 9, 9, 5, 9, 8, 6, 2, 5, 0, 7, 4
Offset: 1

Views

Author

Rick L. Shepherd, Jan 08 2017

Keywords

Comments

The ratio of the perimeter of a regular 12-gon (dodecagon) to its diameter (greatest diagonal).
A quartic integer: the least positive root of x^4 - 144x^2 + 1296.

Examples

			3.105828541230249148186786051488579940188826815839166165768038487780683696...
		

Crossrefs

Cf. For other n-gons: A010466 (n=4), 10*A019827 (n=5, 10), A280533 (n=7), A280585 (n=8), A280633 (n=9), A280725 (n=11).

Programs

Formula

Previous Showing 11-20 of 26 results. Next