cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A381152 Decimal expansion of the isoperimetric quotient of a regular pentagon.

Original entry on oeis.org

8, 6, 4, 8, 0, 6, 2, 6, 5, 9, 7, 7, 2, 0, 9, 9, 6, 7, 2, 3, 1, 1, 8, 2, 0, 6, 5, 8, 5, 8, 6, 2, 3, 3, 3, 7, 0, 3, 8, 2, 8, 5, 5, 5, 6, 9, 0, 2, 2, 8, 3, 9, 9, 6, 2, 1, 3, 2, 0, 9, 5, 7, 3, 9, 8, 9, 3, 3, 2, 7, 0, 9, 3, 4, 1, 1, 8, 7, 1, 2, 9, 6, 4, 8, 0, 4, 0, 2, 3, 3
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

The isoperimetric quotient of a closed curve is equal to 4*Pi*A/p^2, where A is the area enclosed by the curve and p is its perimeter. For a regular n-gon, this is equivalent to Pi/(n*tan(Pi/n)).
The isoperimetric quotient of a circle is 1.

Examples

			0.86480626597720996723118206585862333703828555690228...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381154 (9-gon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(5*Tan[Pi/5]), 10, 100]]

Formula

Equals Pi/(5*tan(Pi/5)) = (Pi/5)*A019952.
Equals (4/25)*Pi*A102771.

A344172 Decimal expansion of 4*sqrt(5 + 2*sqrt(5)).

Original entry on oeis.org

1, 2, 3, 1, 0, 7, 3, 4, 1, 4, 8, 7, 0, 1, 0, 1, 3, 6, 1, 0, 2, 8, 1, 1, 6, 2, 3, 0, 4, 1, 4, 7, 6, 3, 9, 2, 9, 6, 0, 2, 6, 8, 0, 8, 5, 7, 4, 1, 5, 1, 1, 6, 9, 7, 0, 8, 1, 5, 6, 6, 2, 5, 0, 0, 1, 4, 9, 9, 4, 5, 3, 1, 5, 3, 9, 8, 0, 3, 6, 3, 6, 7, 3, 8, 1, 8, 3, 7, 4, 8, 8, 6, 6
Offset: 2

Views

Author

Wesley Ivan Hurt, May 10 2021

Keywords

Comments

Decimal expansion of the volume of a rhombic triacontahedron with unit edge length.

Examples

			12.310734148701013610281...
		

Crossrefs

Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344212 (rhombic triacontahedron midradius).
Cf. A019952 (rhombic triacontahedron radius of inscribed sphere).

Programs

  • Mathematica
    RealDigits[4 Sqrt[5 + 2 Sqrt[5]], 10, 100][[1]] // Flatten

A153127 a(n) = (2*n + 1)*(5*n + 6).

Original entry on oeis.org

6, 33, 80, 147, 234, 341, 468, 615, 782, 969, 1176, 1403, 1650, 1917, 2204, 2511, 2838, 3185, 3552, 3939, 4346, 4773, 5220, 5687, 6174, 6681, 7208, 7755, 8322, 8909, 9516, 10143, 10790, 11457, 12144, 12851, 13578, 14325, 15092, 15879, 16686, 17513
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 20 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2n+1)(5n+6),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{6,33,80},50] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    a(n)=(2*n+1)*(5*n+6) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = A153126(2*n+1) = A000566(2*(n+1)) - 1.
a(n) = a(n-1) + 20*n + 7 (with a(0)=6). - Vincenzo Librandi, Dec 27 2010
G.f.: (-6-15*x+x^2)/(-1+x)^3 - Harvey P. Dale, Jun 07 2021
Sum_{n>=0} 1/a(n) = 5/7 - sqrt(1+2/sqrt(5))*Pi/14 - sqrt(5)*log(phi)/14 - 5*log(5)/28 + 2*log(2)/7, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(6 + 27*x + 10*x^2).
a(n) = A005408(n)*A016861(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A190987 a(n) = 10*a(n-1) - 5*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 10, 95, 900, 8525, 80750, 764875, 7245000, 68625625, 650031250, 6157184375, 58321687500, 552430953125, 5232701093750, 49564856171875, 469485056250000, 4447026281640625, 42122837535156250, 398993243943359375, 3779318251757812500, 35798216297861328125
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A190958 (index to generalized Fibonacci sequences).
Cf. A019934 (sqrt(5-2*sqrt(5))), A019952 (sqrt(5+2*sqrt(5))).

Programs

  • Magma
    [Round(5^((n-1)/2)*Evaluate(ChebyshevU(n), Sqrt(5))): n in [0..30]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    LinearRecurrence[{10,-5}, {0,1}, 50]
  • SageMath
    A190987 = BinaryRecurrenceSequence(10, -5, 0, 1)
    [A190987(n) for n in (0..30)] # G. C. Greubel, Sep 07 2022

Formula

G.f.: x/(1 - 10*x + 5*x^2). - Philippe Deléham, Oct 12 2011
E.g.f.: (1/(2*sqrt(5)))*exp(5*x)*sinh(2*sqrt(5)*x). - G. C. Greubel, Sep 07 2022

A131895 a(n) = (n + 2)*(5*n + 1)/2.

Original entry on oeis.org

1, 9, 22, 40, 63, 91, 124, 162, 205, 253, 306, 364, 427, 495, 568, 646, 729, 817, 910, 1008, 1111, 1219, 1332, 1450, 1573, 1701, 1834, 1972, 2115, 2263, 2416, 2574, 2737, 2905, 3078, 3256, 3439, 3627, 3820, 4018, 4221, 4429, 4642, 4860, 5083, 5311, 5544
Offset: 0

Views

Author

Gary W. Adamson, Jul 24 2007

Keywords

Comments

Row sums of triangle A131894.
Binomial transform of (1, 8, 5, 0, 0, 0, ...).

Examples

			a(2) = 22 = sum of row 2 terms of triangle A131894: (11 + 6 + 5).
a(2) = 22 = (1, 2, 1) dot (1, 8, 5) = (1 + 16 + 5).
		

Crossrefs

Programs

Formula

a(n) = a(n-1) + 5*n + 3 (with a(0)=1). - Vincenzo Librandi, Nov 23 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=9, a(2)=22. - Harvey P. Dale, Sep 11 2015
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 6*x - 2*x^2)/(1 - x)^3.
E.g.f.: (1 + 8*x + 5*x^2/2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = (2 + sqrt(1+2/sqrt(5))*Pi + sqrt(5)*log(phi) + 5*log(5)/2)/9, where phi is the golden ratio (A001622). - Amiram Eldar, Jun 02 2025

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 04 2008
Simpler definition from Wesley Ivan Hurt, Mar 26 2014

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.

A357715 Decimal expansion of sqrt(16 + 32 / sqrt(5)).

Original entry on oeis.org

5, 5, 0, 5, 5, 2, 7, 6, 8, 1, 8, 8, 4, 6, 9, 4, 1, 5, 2, 8, 2, 8, 8, 3, 8, 3, 2, 7, 6, 4, 3, 5, 5, 0, 7, 1, 8, 1, 0, 3, 5, 9, 7, 3, 4, 4, 0, 3, 2, 6, 3, 4, 6, 5, 3, 4, 6, 2, 7, 0, 3, 0, 6, 2, 4, 7, 6, 3, 8, 0, 7, 7, 5, 0, 6, 8, 6, 9, 1, 9, 4, 0, 2, 6, 3, 8, 1, 1, 9, 7, 2, 4, 4, 0, 2, 8, 0
Offset: 1

Views

Author

Michal Paulovic, Oct 10 2022

Keywords

Comments

The perimeter of a golden rectangle inscribed in a unit circle.
The width and height of the rectangle are:
W = sqrt(2 - 2 / sqrt(5)) = A179290.
H = sqrt(2 + 2 / sqrt(5)) = A121570.

Examples

			5.5055276818846941...
		

Crossrefs

Programs

  • Maple
    sqrt(16 + 32 / sqrt(5));
  • Mathematica
    Sqrt[16 + 32/Sqrt[5]]
  • PARI
    sqrt(16 + 32 / sqrt(5))

Formula

Equals (4 / sqrt(5)) * sqrt(5 + 2 * sqrt(5)) = A356869 * A019970.
Equals sqrt(5 + 2 * sqrt(5)) / (sqrt(5) / 4) = A019970 / A204188.
Equals 4 * sqrt(1 + 2 / sqrt(5)) = 4 * A019952.
Equals 4 / sqrt(5 - 2 * sqrt(5)) = 4 / A019934.
Previous Showing 11-17 of 17 results.