A326437
E.g.f.: exp(-5) * Sum_{n>=0} (2*exp(n*x) + 3)^n / n!.
Original entry on oeis.org
1, 12, 298, 11154, 568004, 37059182, 2978383982, 286712714932, 32370944416718, 4216616929161674, 625354679867770896, 104450484419292872298, 19469192354728354857686, 4018460441266469063161936, 912287005016859245973405858, 226476227666270561445555706042, 61164205107875867322971316940164
Offset: 0
E.g.f.: A(x) = 1 + 12*x + 298*x^2/2! + 11154*x^3/3! + 568004*x^4/4! + 37059182*x^5/5! + 2978383982*x^6/6! + 286712714932*x^7/7! + 32370944416718*x^8/8! + 4216616929161674*x^9/9! + ...
such that
A(x) = exp(-5) * (1 + (2*exp(x) + 3) + (2*exp(2*x) + 3)^2/2! + (2*exp(3*x) + 3)^3/3! + (2*exp(4*x) + 3)^4/4! + (2*exp(5*x) + 3)^5/5! + (2*exp(6*x) + 3)^6/6! + ...)
also
A(x) = exp(-5) * (exp(3) + 2*exp(x)*exp(3*exp(x)) + 2^2*exp(4*x)*exp(3*exp(2*x))/2! + 2^3*exp(9*x)*exp(3*exp(3*x))/3! + 2^4*exp(16*x)*exp(3*exp(4*x))/4! + 2^5*exp(25*x)*exp(3*exp(5*x))/5! + 2^6*exp(36*x)*exp(3*exp(6*x))/6! + ...).
A099977
Bisection of Bell numbers, A000110.
Original entry on oeis.org
1, 5, 52, 877, 21147, 678570, 27644437, 1382958545, 82864869804, 5832742205057, 474869816156751, 44152005855084346, 4638590332229999353, 545717047936059989389, 71339801938860275191172
Offset: 0
-
G:=series(exp(exp(x)-1),x=0,50): seq((2*n-1)!*coeff(G,x^(2*n-1)),n=1..18);
-
from itertools import accumulate, islice
def A099977_gen(): # generator of terms
yield 1
blist, b = (1,2), 1
while True:
for _ in range(2):
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield b
A099977_list = list(islice(A099977_gen(),30)) # Chai Wah Wu, Jun 22 2022
Original entry on oeis.org
1, 5, 203, 21147, 4213597, 1382958545, 682076806159, 474869816156751, 445958869294805289, 545717047936059989389, 846749014511809332450147, 1629595892846007606764728147, 3819714729894818339975525681317
Offset: 0
-
Table[ BellB[3*n], {n, 0, 12}] (* Jean-François Alcover, Dec 13 2012 *)
BellB[3*Range[0,15]] (* Harvey P. Dale, Apr 19 2020 *)
-
for(n=0,50,print1(round(sum(i=0,1000,i^(3*n)/(i)!)/exp(1)),","))
-
from itertools import accumulate, islice
def A070906_gen(): # generator of terms
yield 1
blist, b = (1,), 1
while True:
for _ in range(3):
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield b
A070906_list = list(islice(A070906_gen(),30)) # Chai Wah Wu, Jun 22 2022
-
[bell_number(3*n) for n in range(0, 13)] # Zerinvary Lajos, May 14 2009
A108462
Number of factorizations of (n,n) into pairs (i,j) with i,j >= 1, not both 1.
Original entry on oeis.org
1, 2, 2, 9, 2, 15, 2, 31, 9, 15, 2, 92, 2, 15, 15, 109, 2, 92, 2, 92, 15, 15, 2, 444, 9, 15, 31, 92, 2, 203, 2, 339, 15, 15, 15, 712, 2, 15, 15, 444, 2, 203, 2, 92, 92, 15, 2, 1903, 9, 92, 15, 92, 2, 444, 15, 444, 15, 15, 2, 1663, 2, 15, 92, 1043, 15, 203, 2, 92, 15, 203, 2
Offset: 1
From _Alois P. Heinz_ and _Antti Karttunen_, Nov 24 2017: (Start)
a(4) = 9 because for pair (4,4) there are nine factorizations:
(4,4)
(1,4)*(4,1)
(1,2)*(4,2)
(2,1)*(2,4)
(2,2)*(2,2)
(1,2)*(2,1)*(2,2)
(1,4)*(2,1)*(2,1)
(4,1)*(1,2)*(1,2)
(1,2)*(1,2)*(2,1)*(2,1)
(End)
a(pq) = 15 for primes p<>q: (pq,pq); (p,1)(q,pq); (p,1)(q,1)(1,pq); (p,1)(q,1)(1,p)(1,q); (p,1)(q,q)(1,p); (p,1)(q,p)(1,q); (p,q)(q,p); (p,q)(q,1)(1,p); (p,p)(q,q) ; (p,p)(q,1)(1,q); (p,pq)(q,1); (pq,1)(1,pq); (pq,1)(1,p)(1,q); (pq,q)(1,p); (pq,p)(1,q). - _R. J. Mathar_, Nov 30 2017
-
a(n) = if(n==1, return(1)); my(b, c, r, x, y, v=List([]), w=List([[n]])); while(#w>r, c++; for(k=r+1, r=#w, y=w[k]; if(!isprime(x=y[c]), fordiv(x, d, if(d!=1&&d!=x, listput(w, concat([y[1..c-1], d, x/d]))))))); for(i=1, #w, x=w[i]; r=#x; for(j=1, #w, y=w[j]; for(k=0, 2^r-1, b=concat(b=binary(k), vector(r-#b)); if(#y>=t=vecsum(b), c=0; listput(v, vecsort(vector(r+#y-t, m, if(m>r, [1, y[m-r+t]], if(b[m], [x[m], y[c++]], [x[m], 1]))))))))); #Set(v); \\ Jinyuan Wang, Jan 17 2022
A308646
a(n) = exp(1) * Sum_{k>=0} (-1)^k*k^(2*n)/k!.
Original entry on oeis.org
1, 0, 1, -9, 50, 413, -17731, 110176, 9938669, -278475061, -9816860358, 725503033401, 15823587507881, -2848115497132448, -38795579403211671, 17235101634895315375, 153440975825762815938, -156894403296377741177371, -1454252568471818731501051, 2071137586315785548669378432
Offset: 0
-
seq(BellB(2*n,-1),n=0..30); # Robert Israel, Jun 08 2020
-
Table[Exp[1] Sum[(-1)^k k^(2 n)/k!, {k, 0, Infinity}], {n, 0, 19}]
Table[BellB[2 n, -1], {n, 0, 19}]
A340822
a(n) = exp(-1) * Sum_{k>=0} (k*(k + n))^n / k!.
Original entry on oeis.org
1, 3, 43, 1211, 54812, 3572775, 313493737, 35368945463, 4962511954307, 844198388785291, 170675800745636572, 40352181663578992883, 11008690527354504977193, 3426969405868832970281647, 1205708016597226199323015459, 475502109963529414669658708847
Offset: 0
-
Table[Exp[-1] Sum[(k (k + n))^n/k!, {k, 0, Infinity}], {n, 0, 15}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[2 n - k] n^k, {k, 0, n}], {n, 1, 15}]]
A340823
a(n) = exp(-1) * Sum_{k>=0} (k*(k - n))^n / k!.
Original entry on oeis.org
1, 1, 3, 5, 124, -2075, 91993, -4709903, 312334595, -25531783799, 2524083665172, -296260739274275, 40667620527027177, -6446882734412545043, 1167717545574222779643, -239452569059443831797303, 55146244227862697483251020, -14163492441645773105212592623
Offset: 0
-
A340823:= func< n | (&+[(-n)^j*Binomial(n,j)*Bell(2*n-j): j in [0..n]]) >;
[A340823(n): n in [0..30]]; // G. C. Greubel, Jun 12 2024
-
Table[Exp[-1] Sum[(k (k - n))^n/k!, {k, 0, Infinity}], {n, 0, 17}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[2 n - k] (-n)^k, {k, 0, n}], {n, 1, 17}]]
-
def A340823(n): return sum( binomial(n,k)*bell_number(2*n-k)*(-n)^k for k in range(n+1))
[A340823(n) for n in range(31)] # G. C. Greubel, Jun 12 2024
Comments