cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 75 results. Next

A375204 Record values in A375202.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 32, 36, 40, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 512, 576, 640, 768, 1024, 1152, 1280, 1536, 2048, 2304, 2560, 3072, 4096, 4608, 5120, 6144, 8192, 9216, 10240, 12288, 16384
Offset: 1

Views

Author

Robert Israel, Oct 15 2024

Keywords

Comments

Numbers k such that k = A375202(m) for some m such that A375202(j) < k for all j < m.
Conjectures: All powers of 2 (A000079), 3*(powers of 2) (A007283) and 5*(powers of 2) (A020714) are terms. All terms are 5-smooth (A051037). - Chai Wah Wu, Oct 16 2024

Examples

			a(3) = 2 because A375202(12) = 2 and A375202(j) <= 1 for j < 12.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q, x, y, z;
      if n/4^padic:-ordp(n, 4) mod 8 = 7 then return -1 fi;
      for x from 0 while 3*x^2 <= n do
        if [isolve(y^2 + z^2 = n - x^2)] <> [] then return x fi
      od;
    end proc:
    V:= NULL:count:= 0: m:= -1;
    for i from 0 while count < 39 do
      v:= f(i);
      if v > m then
        V:= V, v; m:= v; count:=count+1
      fi
    od:
    V;
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import factorint
    def A375204_gen(): # generator of terms
        c = -1
        for n in count(0):
            v = (~n & n-1).bit_length()
            if v&1 or n>>v&7!=7:
                a = next(x for x in range(isqrt(n//3)+1) if not any(e&1 and p&3==3 for p, e in factorint(n-x**2).items()))
                if a>c:
                    yield a
                    c = a
    A375204_list = list(islice(A375204_gen(),20)) # Chai Wah Wu, Oct 16 2024

Formula

a(n) = A375292(A375203(n)).

Extensions

a(35)-a(48) from Chai Wah Wu, Oct 16 2024
a(49)-a(52) from Chai Wah Wu, Oct 17 2024

A168330 Period 2: repeat [3, -2].

Original entry on oeis.org

3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2
Offset: 1

Views

Author

Klaus Brockhaus, Nov 23 2009

Keywords

Comments

Interleaving of A010701 and -A007395.
Binomial transform of 3 followed by a signed version of A020714.
Inverse binomial transform of 3 followed by A000079.
A084964 without first two terms gives partial sums.

Crossrefs

Cf. A168309 (repeat 4, -3), A010701 (all 3's sequence), A007395 (all 2's sequence), A010716 (all 5's sequence), A020714 (5*2^n), A000079 (powers of 2), A084964 (follow n+2 by n).

Programs

  • Magma
    &cat[[3,-2]: n in [1..42]];
    
  • Magma
    [n eq 1 select 3 else -Self(n-1)+1:n in [1..84]];
    
  • Magma
    [(-5*(-1)^n+1)/2: n in [1..100]]; // Vincenzo Librandi, Jul 19 2016
    
  • Mathematica
    LinearRecurrence[{0, 1}, {3, -2}, 25] (* G. C. Greubel, Jul 18 2016 *)
    PadRight[{},120,{3,-2}] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    a(n)=3-n%2*5 \\ Charles R Greathouse IV, Jul 13 2016

Formula

a(n) = (-5*(-1)^n + 1)/2.
a(n+1) - a(n) = 5*(-1)^n.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 3.
a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2.
G.f.: x*(3 - 2*x)/((1-x)*(1+x)).
a(n) = A049071(n). - R. J. Mathar, Nov 25 2009
E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - G. C. Greubel, Jul 18 2016

A199112 a(n) = 10*3^n+1.

Original entry on oeis.org

11, 31, 91, 271, 811, 2431, 7291, 21871, 65611, 196831, 590491, 1771471, 5314411, 15943231, 47829691, 143489071, 430467211, 1291401631, 3874204891, 11622614671, 34867844011, 104603532031, 313810596091, 941431788271, 2824295364811
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Comments

The inverse binomial transform is 11, 20, 40, 80, 160,... closely related to A020714. - R. J. Mathar, Apr 07 2022

Crossrefs

Cf. A020714.

Programs

  • Magma
    [10*3^n+1: n in [0..30]];
  • Mathematica
    10*3^Range[0,30]+1 (* or *) LinearRecurrence[{4,-3},{11,31},30] (* Harvey P. Dale, Dec 07 2011 *)

Formula

a(n) = 3*a(n-1)-2.
a(n) = 4*a(n-1)-3*a(n-2).
G.f.: (11-13*x)/((1-x)*(1-3*x)). - Bruno Berselli, Nov 04 2011

A318163 a(0) = a(3) = 0, a(1) = a(2) = 1; for n >= 2, a(2*n) = -a(n-1) and a(2*n+1) = -a(n-1)-a(n).

Original entry on oeis.org

0, 1, 1, 0, -1, -2, -1, -1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -4, -3, -5, -2, -5, -3, -4, -1, -3, -2, -3, -1, -2, -1, -1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, -1, -1, -2, -1, -3, -2, -3, -1, -4, -3, -5, -2, -5, -3, -4, -1, -6, -5, -9, -4, -11, -7
Offset: 0

Views

Author

Altug Alkan, Aug 19 2018

Keywords

Comments

Inspired by A002487.
Alternatively, a(0) = 0, a(1) = 1; for n >= 1, a(2*n) = a(2*n-1) - a(2*n-2), a(2*n+1) = a(2*n) - a(n). Note that if b(0) = 0, b(1) = 1; for n >= 1, b(2*n) = b(2*n-1) - b(n), b(2*n+1) = b(2*n) - b(2*n-1), then b(n) + A213369(n+1) = 0 for all n >= 1.
The main block structure of this sequence is described by A020714.

Crossrefs

Programs

  • Mathematica
    a[0]=a[3]=0; a[1]=a[2]=1; a[n_] := a[n] = If[EvenQ[n], -a[n/2-1], -a[(n-1)/2 - 1] - a[(n-1)/2]]; Array[a, 101, 0] (* Giovanni Resta, Aug 27 2018 *)
  • PARI
    a = vector(100); print1(0", "); for(k=1, #a, print1 (a[k]=if(k<=2,1, my (n=k\2); if (k%2==0, -a[n-1], a[2*n]-a[n]))", "));

Formula

a(5*2^k-2) = 0 for all k >= 0.

A348363 The 1's in the binary expansion of a(n) encode the distances between the 1's in the binary expansion of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 15, 3, 15, 7, 15, 1, 17, 9, 27, 5, 21, 15, 31, 3, 27, 15, 31, 7, 31, 15, 31, 1, 33, 17, 51, 9, 45, 27, 63, 5, 45, 21, 63, 15, 47, 31, 63, 3, 51, 27, 59, 15, 63, 31, 63, 7, 63, 31, 63, 15, 63, 31, 63, 1, 65, 33, 99, 17, 85, 51
Offset: 0

Views

Author

Rémy Sigrist, Oct 15 2021

Keywords

Comments

The bit 2^d is set in a(n) iff for some e >= 0, the bits 2^e and 2^(e+d) are set in n.
This sequence has similarities with A067398; here we take the absolute differences, there the sums, of indices of 1's in binary expansions.
All terms are odd, except a(0) = 0.

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     1      10          1
   3     3      11         11
   4     1     100          1
   5     5     101        101
   6     3     110         11
   7     7     111        111
   8     1    1000          1
   9     9    1001       1001
  10     5    1010        101
  11    15    1011       1111
  12     3    1100         11
  13    15    1101       1111
  14     7    1110        111
  15    15    1111       1111
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Array[Total[2^Append[Union@ Abs[Subtract @@@ Permutations[1 + Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2], {2}]], 0]] &, 70] (* Michael De Vlieger, Oct 16 2021 *)
  • PARI
    a(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n, 2);); my (p=setbinop((i,j)->abs(i-j), b)); sum (k=1, #p, 2^p[k]) }
    
  • Python
    def a(n):
        locs = [e for e in range(n.bit_length()) if 1 & (n>>e)]
        diffs = set(abs(e1-e2) for i, e1 in enumerate(locs) for e2 in locs[i:])
        return sum(2**d for d in diffs)
    print([a(n) for n in range(71)]) # Michael S. Branicky, Oct 16 2021

Formula

a(2*n) = a(n).
a(n) = n iff n = 0 or n belongs to A064896.
a(n) = 1 iff n is a power of 2 (A000079).
a(n) = 3 iff n belongs to A007283.
a(n) = 5 iff n belongs to A020714.
a(n) AND n = n for any odd number n (where AND denotes the bitwise AND operator).

A376065 Orders k of groups G such that Inn(G) is isomorphic to Z(Aut(G)) for at least one G of order k.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 216, 243, 256, 288, 320, 384, 432, 486, 512, 576, 640, 648, 729, 768, 864
Offset: 1

Views

Author

Miles Englezou, Sep 07 2024

Keywords

Comments

Inn(G) is the inner automorphism group of G and Z(Aut(G)) is the center of the automorphism group of G.
A group G for which Inn(G) = Z(Aut(G)) allows for a natural construction of Aut(Aut(G)) via the homomorphism f: Aut(G) -> Aut(Aut(G)) which maps Aut(G) to Inn(Aut(G)) = Aut(G)/Z(Aut(G)) in the same way that G is mapped to Inn(G) = G/Z(G). Furthermore Inn(Aut(G)) = Out(G) (the outer automorphism group), and we have an exact sequence of homomorphisms 1 -> G -> Aut(G) -> Aut(Aut(G)) -> 1. Each term a(n) is thus the order of a group which allows for this particular construction of Aut(Aut(G)).
The diagram of homomorphisms is as follows:
Aut(Aut(G)) --> Out(Aut(G))
/ ^ /
/ | /
Aut(G) --> Inn(Aut(G)) (= Aut(G)/Z(Aut(G)) = Out(G))
/ ^ /
/ | /
G --> Z(Aut(G)) (= Inn(G))
^ /
| /
Z(G)
A000079, A007283(m) for m >= 3, and A020714(r) for r >= 6, are subsequences. See the Miles Englezou link for proofs. In the link it is also shown that the method of proof used to determine that A007283(m) and A020714(r) are subsequences is limited to Fermat primes (A019434) and therefore cannot be used to determine whether 2^s*p is a subsequence for every prime p.

Examples

			24 is a term since for G = C3 x D8, Inn(G) = Z(Aut(G)) = C2 x C2, and G has order 24.
		

Crossrefs

Programs

  • GAP
    S:=[];
    for n in [1..500] do
        for i in [1..NrSmallGroups(n)] do
            G:=SmallGroup(n,i);
            Aut:=AutomorphismGroup(G);
            Inn:=InnerAutomorphismsAutomorphismGroup(Aut);
            if IsomorphismGroups(Centre(Aut),Inn)<>fail then
                S:=Concatenation(S,[n]);
                break;
            fi;
        od;
    od;
    Print(S);

A381793 Smallest k>1 such that 10*k^(5*2^n)+1 is prime.

Original entry on oeis.org

6, 11, 649, 792, 1034, 12386, 21813, 87318, 35387, 207339, 67958
Offset: 0

Views

Author

Jakub Buczak, Mar 07 2025

Keywords

Examples

			a(0) = 6, because 10*6^(5*2^0)+1 equals 77761 which is prime.
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    from itertools import count
    def a(n): return next(k for k in count(2) if isprime(k**(5*(2**n)) * 10 + 1))

Extensions

a(7)-a(10) from Michael S. Branicky, Mar 07 2025

A159020 a(0)=11; a(n) = a(n-1) + floor(sqrt(a(n-1))), n > 0.

Original entry on oeis.org

11, 14, 17, 21, 25, 30, 35, 40, 46, 52, 59, 66, 74, 82, 91, 100, 110, 120, 130, 141, 152, 164, 176, 189, 202, 216, 230, 245, 260, 276, 292, 309, 326, 344, 362, 381, 400, 420, 440, 460, 481, 502, 524, 546, 569
Offset: 0

Views

Author

Philippe Deléham, Apr 02 2009

Keywords

Comments

Row 2 in square array A159016.
This sequence contains an infinite number of squares. - Philippe Deléham, Apr 04 2009
The squares in this sequence are A020714(k)^2, k=0,1,2,.... - Vincenzo Librandi, Apr 20 2009 [clarified by R. J. Mathar, Dec 05 2010]

Crossrefs

A228305 a(1) = 3; for n >= 1, a(2*n) = 2^(n+1), a(2*n+1) = 5*2^(n-1).

Original entry on oeis.org

3, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304, 5242880
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 20 2013

Keywords

Comments

Union of A020714 and A198633.
Essentially the same as A094958.
For every n, a(1)^3 + a(2)^3 + a(3)^3 + ... + a(2*n-1)^3 is a cube.

Examples

			a(9) = 40 because it is equal to 5*2^(4-1).
		

Crossrefs

Programs

  • Magma
    [n le 3 select n+2 else 2*Self(n-2) : n in [1..43]];
    
  • Mathematica
    CoefficientList[Series[(3 + 4 x - x^2)/(1 - 2 x^2), {x, 0, 50}], x] (* Bruno Berselli, Aug 20 2013 *)
  • PARI
    r=43; print1(3); print1(", "); for(n=2, r, if(bitand(n, 1), print1(5*2^((n-3)/2)), print1(2^(n/2+1))); print1(", "));

Formula

a(n) = ceiling((9 - (- 1)^n)*2^(floor(n/2) - 2)).
a(n) = n + 2 for n <= 3; a(n) = 2*a(n-2) for n > 3.
From Bruno Berselli, Aug 20 2013: (Start)
G.f.: x*(3+4*x-x^2)/(1-2*x^2).
a(n) = (16-(8-5*r)*(1-(-1)^n))*r^(n-6) for n>1, r=sqrt(2). (End)
E.g.f.: (8*cosh(sqrt(2)*x) + 5*sqrt(2)*sinh(sqrt(2)*x) + 2*x - 8)/4. - Stefano Spezia, Apr 09 2025

A268896 Start at a(0)=1. a(n) = a(n-1)+2 if n == 1,2 (mod 3) and a(n)=a(n-1)+a(n-3) if n == 0 (mod 3).

Original entry on oeis.org

1, 3, 5, 6, 8, 10, 16, 18, 20, 36, 38, 40, 76, 78, 80, 156, 158, 160, 316, 318, 320, 636, 638, 640, 1276, 1278, 1280, 2556, 2558, 2560, 5116, 5118, 5120, 10236, 10238, 10240, 20476, 20478, 20480, 40956, 40958
Offset: 0

Views

Author

Ravesh Sukhram, Feb 27 2016

Keywords

Comments

See Mathematica section for an explicit formula for the n-th term. - Benedict W. J. Irwin, May 30 2016

Programs

  • Mathematica
    Simplify[Table[1/6 (10 (2^n)^(1/3) + 4 (-3 + 5 2^(n/3)) Cos[(2 n Pi)/3] + 5 2^((4 + n)/3)Sin[(n Pi)/3] (Sqrt[3] (-1 + 2^(1/3)) Cos[(n Pi)/3] + (1 + 2^(1/3)) Sin[(n Pi)/3]) - 4 (3 + Sqrt[3] Sin[(2 n Pi)/3])), {n, 0, 20}]] (* Benedict W. J. Irwin, May 30 2016 *)

Formula

G.f.: ( 1+3*x+5*x^2+3*x^3-x^4-5*x^5 ) / ( (x-1)*(2*x^3-1)*(1+x+x^2) ). - R. J. Mathar, Apr 16 2016
a(3n) = A048487(n). a(3n+1) = A131051(n+1). a(3n+2)=A020714(n). - R. J. Mathar, Apr 16 2016
Previous Showing 61-70 of 75 results. Next