cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A372273 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 6.

Original entry on oeis.org

9, 3, 2, 4, 6, 9, 5, 1, 4, 2, 0, 3, 1, 5, 2, 0, 2, 7, 8, 1, 2, 3, 0, 1, 5, 5, 4, 4, 9, 3, 9, 9, 4, 6, 0, 9, 1, 3, 4, 7, 6, 5, 7, 3, 7, 7, 1, 2, 2, 8, 9, 8, 2, 4, 8, 7, 2, 5, 4, 9, 6, 1, 6, 5, 2, 6, 6, 1, 3, 5, 0, 0, 8, 4, 4, 2, 0, 0, 1, 9, 6, 2, 7, 6, 2, 8, 8
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.932469514203152027812301554493994609134765737712289824872549...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros
---+--------------------------
2 | A020760
3 | A010513/10

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[6, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)

Formula

Largest positive root of 231*x^6 - 315*x^4 + 105*x^2 - 5 = 0.

A372274 Decimal expansion of the smallest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

4, 0, 5, 8, 4, 5, 1, 5, 1, 3, 7, 7, 3, 9, 7, 1, 6, 6, 9, 0, 6, 6, 0, 6, 4, 1, 2, 0, 7, 6, 9, 6, 1, 4, 6, 3, 3, 4, 7, 3, 8, 2, 0, 1, 4, 0, 9, 9, 3, 7, 0, 1, 2, 6, 3, 8, 7, 0, 4, 3, 2, 5, 1, 7, 9, 4, 6, 6, 3, 8, 1, 3, 2, 2, 6, 1, 2, 5, 6, 5, 5, 3, 2, 8, 3, 1, 2
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.405845151377397166906606412076961463347382014099370126387043...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | this sequence, A372275, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 5], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.1, 0.5, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Smallest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372275 Decimal expansion of the middle positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

7, 4, 1, 5, 3, 1, 1, 8, 5, 5, 9, 9, 3, 9, 4, 4, 3, 9, 8, 6, 3, 8, 6, 4, 7, 7, 3, 2, 8, 0, 7, 8, 8, 4, 0, 7, 0, 7, 4, 1, 4, 7, 6, 4, 7, 1, 4, 1, 3, 9, 0, 2, 6, 0, 1, 1, 9, 9, 5, 5, 3, 5, 1, 9, 6, 7, 4, 2, 9, 8, 7, 4, 6, 7, 2, 1, 8, 0, 5, 1, 3, 7, 9, 2, 8, 2, 6
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.741531185599394439863864773280788407074147647141390260119955...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, this sequence, A372276 | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 6], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.6, 0.8, 429*x^6 - 693*x^4 + 315*x^2 - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Middle positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A372276 Decimal expansion of the largest positive zero of the Legendre polynomial of degree 7.

Original entry on oeis.org

9, 4, 9, 1, 0, 7, 9, 1, 2, 3, 4, 2, 7, 5, 8, 5, 2, 4, 5, 2, 6, 1, 8, 9, 6, 8, 4, 0, 4, 7, 8, 5, 1, 2, 6, 2, 4, 0, 0, 7, 7, 0, 9, 3, 7, 6, 7, 0, 6, 1, 7, 7, 8, 3, 5, 4, 8, 7, 6, 9, 1, 0, 3, 9, 1, 3, 0, 6, 3, 3, 3, 0, 3, 5, 4, 8, 4, 0, 1, 4, 0, 8, 0, 5, 7, 3, 0
Offset: 0

Views

Author

Pontus von Brömssen, Apr 25 2024

Keywords

Examples

			0.949107912342758524526189684047851262400770937670617783548769...
		

Crossrefs

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
7 | A372274, A372275, this sequence | A382688, A382689, A382690

Programs

  • Mathematica
    First[RealDigits[Root[LegendreP[7, #] &, 7], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    solve (x = 0.8, 1.0, 429*x^6 - 693*x^4 + 315*x^ - 35) \\ A.H.M. Smeets, May 31 2025

Formula

Largest positive root of 429*x^6 - 693*x^4 + 315*x^2 - 35 = 0.

A020765 Decimal expansion of 1/sqrt(8).

Original entry on oeis.org

3, 5, 3, 5, 5, 3, 3, 9, 0, 5, 9, 3, 2, 7, 3, 7, 6, 2, 2, 0, 0, 4, 2, 2, 1, 8, 1, 0, 5, 2, 4, 2, 4, 5, 1, 9, 6, 4, 2, 4, 1, 7, 9, 6, 8, 8, 4, 4, 2, 3, 7, 0, 1, 8, 2, 9, 4, 1, 6, 9, 9, 3, 4, 4, 9, 7, 6, 8, 3, 1, 1, 9, 6, 1, 5, 5, 2, 6, 7, 5, 9, 7, 1, 2, 5, 9, 6, 8, 8, 3, 5, 8, 1, 9, 1, 0, 3, 9, 3
Offset: 0

Views

Author

Keywords

Comments

Multiplied by 10, this is the real and the imaginary part of sqrt(25i). - Alonso del Arte, Jan 11 2013
Radius of the midsphere (tangent to the edges) in a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013
The side of the largest cubical present that can be wrapped (with cutting) by a unit square of wrapping paper. See Problem 10716 link. - Michel Marcus, Jul 24 2018
The ratio between the thickness and diameter of a geometrically fair coin having an equal probability, 1/3, of landing on each of its two faces and on its side after being tossed in the air. The calculation is based on comparing the areal projections of the faces and sides of the coin on a circumscribing sphere. (Mosteller, 1965). See A020760 for a physical solution. - Amiram Eldar, Sep 01 2020

Examples

			1/sqrt(8) = 0.353553390593273762200422181052424519642417968844237018294...
		

References

  • Frederick Mosteller, Fifty challenging problems of probability, Dover, New York, 1965. See problem 38, pp. 10 and 58-60.

Crossrefs

Cf. Midsphere radii in Platonic solids:
A020761 (octahedron),
A010503 (cube),
A019863 (icosahedron),
A239798 (dodecahedron).

Programs

Formula

A010503 divided by 2.
Equals A201488 minus 1/2. Equals 1/(A010487-4) minus 1/4. - Jon E. Schoenfield, Jan 09 2017
Equals Integral_{x=0..oo} x*exp(-x)*BesselJ(0,x) dx. - Kritsada Moomuang, Jun 03 2025

A050931 Numbers having a prime factor congruent to 1 mod 6.

Original entry on oeis.org

7, 13, 14, 19, 21, 26, 28, 31, 35, 37, 38, 39, 42, 43, 49, 52, 56, 57, 61, 62, 63, 65, 67, 70, 73, 74, 76, 77, 78, 79, 84, 86, 91, 93, 95, 97, 98, 103, 104, 105, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133, 134, 139, 140, 143, 146, 147, 148, 151
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 30 1999

Keywords

Comments

Original definition: Solutions c of cot(2*Pi/3)*(-(a+b+c)*(-a+b+c)*(-a+b-c)*(a+b-c))^(1/2)=a^2+b^2-c^2, c>a,b integers.
Note cot(2*Pi/3) = -1/sqrt(3).
Also the c-values for solutions to c^2 = a^2 + ab + b^2 in positive integers. Also the numbers which occur as the longest side of some triangle with integer sides and a 120-degree angle. - Paul Boddington, Nov 05 2007
The sequence can also be defined as the numbers w which are Heronian means of two distinct positive integers u and v, i.e., w = [u+sqrt(uv)+v]/3. E.g., 28 is the Heronian mean of 4 and 64 (and also of 12 and 48). - Pahikkala Jussi, Feb 16 2008
From Jean-Christophe Hervé, Nov 24 2013: (Start)
This sequence is the analog of hypotenuse numbers A009003 for triangles with integer sides and a 120-degree angle. There are two integers a and b > 0 such that a(n)^2 = a^2 + ab + b^2, and a, b and a(n) are the sides of the triangle: a(n) is the sequence of lengths of the longest side of these triangles. A004611 is the same for primitive triangles.
a and b cannot be equal because sqrt(3) is not rational. Then the values a(n) are such that a(n)^2 is in A024606. It follows that a(n) is the sequence of multiples of primes of form 6k+1 A002476.
The sequence is closed under multiplication. The primitive elements are those with exactly one prime divisor of the form 6k+1 with multiplicity one, which are also those for which there exists a unique 120-degree integer triangle with its longest side equals to a(n).
(End)
Conjecture: Numbers m such that abs(Sum_{k=1..m} [k|m]*A008683(k)*(-1)^(2*k/3)) = 0. - Mats Granvik, Jul 06 2024

Crossrefs

Cf. A002476, A004611, A024606, A230780 (complement), A009003.
Cf. A027748.

Programs

  • Haskell
    a050931 n = a050931_list !! (n-1)
    a050931_list = filter (any (== 1) . map (flip mod 6) . a027748_row) [1..]
    -- Reinhard Zumkeller, Apr 09 2014
    
  • Mathematica
    Select[Range[2,200],MemberQ[Union[Mod[#,6]&/@FactorInteger[#][[All,1]]],1]&] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    is_A050931(n)=n>6&&Set(factor(n)[,1]%6)[1]==1 \\ M. F. Hasler, Mar 04 2018

Formula

A005088(a(n)) > 0. Terms are obtained by the products A230780(k)*A004611(p) for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 24 2013
cot(2*Pi/3) = -1/sqrt(3) = -0.57735... = - A020760. - M. F. Hasler, Aug 18 2016

Extensions

Simpler definition from M. F. Hasler, Mar 04 2018

A382103 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267.

Original entry on oeis.org

3, 4, 7, 8, 5, 4, 8, 4, 5, 1, 3, 7, 4, 5, 3, 8, 5, 7, 3, 7, 3, 0, 6, 3, 9, 4, 9, 2, 2, 1, 9, 9, 9, 4, 0, 7, 2, 3, 5, 3, 4, 8, 6, 9, 5, 8, 3, 3, 8, 9, 3, 5, 4, 0, 4, 9, 2, 5, 2, 9, 3, 1, 9, 5, 1, 8, 7, 5, 1, 8, 6, 7, 4, 6, 5, 9, 1, 0, 3, 5, 1, 7, 2, 1, 9, 8, 3
Offset: 0

Views

Author

A.H.M. Smeets, Mar 15 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
4 | A372267, A372268 | this sequence, A382104

Examples

			0.34785484513745385737306394922199940723534869583389...
		

Crossrefs

Cf. A372267.

Programs

  • Mathematica
    RealDigits[1/2 - Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)

Formula

Equals 1/2 - (1/6)*sqrt(5/6).

A382104 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.

Original entry on oeis.org

6, 5, 2, 1, 4, 5, 1, 5, 4, 8, 6, 2, 5, 4, 6, 1, 4, 2, 6, 2, 6, 9, 3, 6, 0, 5, 0, 7, 7, 8, 0, 0, 0, 5, 9, 2, 7, 6, 4, 6, 5, 1, 3, 0, 4, 1, 6, 6, 1, 0, 6, 4, 5, 9, 5, 0, 7, 4, 7, 0, 6, 8, 0, 4, 8, 1, 2, 4, 8, 1, 3, 2, 5, 3, 4, 0, 8, 9, 6, 4, 8, 2, 7, 8, 0, 1, 6
Offset: 0

Views

Author

A.H.M. Smeets, Mar 15 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights for Legendre-Gauss quadrature
---+---------------------------+----------------------------------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
4 | A372267, A372268 | A382103, this sequence

Examples

			0.65214515486254614262693605077800059276465130416610645...
		

Crossrefs

Cf. A372268.

Programs

  • Mathematica
    RealDigits[1/2 + Sqrt[5/6]/6, 10, 120][[1]] (* Amiram Eldar, Mar 24 2025 *)
  • PARI
    1/2 + (1/6)*sqrt(5/6) \\ Stefano Spezia, May 22 2025

Formula

Equals 1/2 + (1/6)*sqrt(5/6).
Minimal polynomial: 216*x^2 - 216*x + 49. - Stefano Spezia, May 22 2025

A382106 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372270.

Original entry on oeis.org

2, 3, 6, 9, 2, 6, 8, 8, 5, 0, 5, 6, 1, 8, 9, 0, 8, 7, 5, 1, 4, 2, 6, 4, 0, 4, 0, 7, 1, 9, 9, 1, 7, 3, 6, 2, 6, 4, 3, 2, 6, 0, 0, 0, 2, 2, 1, 2, 4, 1, 4, 0, 1, 5, 5, 8, 2, 8, 2, 7, 8, 8, 8, 2, 2, 1, 7, 1, 7, 2, 8, 8, 4, 0, 3, 0, 4, 3, 0, 9, 8, 5, 7, 9, 9, 9, 3
Offset: 0

Views

Author

A.H.M. Smeets, Mar 27 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
5 | A372269, A372270 | A382106, this sequence

Examples

			0.236926885056189087514264040719917362643260002212...
		

Crossrefs

Cf. A372270.

Formula

Equals (322-13*sqrt(70))/900.

A382107 Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372271.

Original entry on oeis.org

4, 6, 7, 9, 1, 3, 9, 3, 4, 5, 7, 2, 6, 9, 1, 0, 4, 7, 3, 8, 9, 8, 7, 0, 3, 4, 3, 9, 8, 9, 5, 5, 0, 9, 9, 4, 8, 1, 1, 6, 5, 5, 6, 0, 5, 7, 6, 9, 2, 1, 0, 5, 3, 5, 3, 1, 1, 6, 2, 5, 3, 1, 9, 9, 6, 3, 9, 1, 4, 2, 0, 1, 6, 2, 0, 3, 9, 8, 1, 2, 7, 0, 3, 1, 1, 1, 0
Offset: 0

Views

Author

A.H.M. Smeets, Mar 27 2025

Keywords

Comments

There are floor(k/2) positive zeros of the Legendre polynomial of degree k:
k | zeros | corresponding weights
---+---------------------------+--------------------------
2 | A020760 | A000007*10
3 | A010513/10 | A010716
6 | A372271, A372272, A372273 | this sequence, A382686, A382687

Examples

			0.4679139345726910473898703439895509948116556057692...
		

Crossrefs

Cf. A372271.
Previous Showing 11-20 of 56 results. Next