cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A165952 Decimal expansion of 2*sqrt(3)/(3*Pi).

Original entry on oeis.org

3, 6, 7, 5, 5, 2, 5, 9, 6, 9, 4, 7, 8, 6, 1, 3, 6, 6, 3, 4, 0, 8, 8, 4, 3, 3, 2, 2, 0, 8, 6, 4, 6, 2, 9, 4, 2, 6, 4, 9, 2, 4, 3, 2, 0, 2, 4, 4, 4, 2, 7, 1, 0, 1, 8, 6, 6, 2, 4, 4, 0, 1, 3, 5, 2, 7, 3, 5, 3, 5, 3, 5, 6, 4, 6, 1, 7, 9, 8, 6, 3, 2, 2, 6, 9, 2, 0, 0, 1, 9, 2, 1, 5, 4, 4, 7, 2, 5, 9, 4, 7, 1, 7, 9, 8
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a cube to the volume of the circumscribed sphere (which has circumradius a*sqrt(3)/2 = a*A010527, where a is the cube's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165953, and A165954. A063723 shows the order of these by size.

Examples

			0.3675525969478613663408843322086462942649243202444271018662440135273535356...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Sqrt[3])/(3Pi),10,120][[1]] (* Harvey P. Dale, Oct 08 2012 *)
  • PARI
    2*sqrt(3)/(3*Pi)

Formula

2*sqrt(3)/(3*Pi) = 2*A002194/(3*A000796) = 3*A165922 = (2*sqrt(3)/3)*A049541 = 10*A020832*A049541 = 2*A020760*A049541.

A132367 Period 6: repeat [1, 1, 2, -1, -1, -2].

Original entry on oeis.org

1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2, 1, 1, 2, -1, -1, -2
Offset: 0

Views

Author

Paul Curtz, Nov 09 2007

Keywords

Comments

Nonsimple continued fraction expansion of 1+1/sqrt(3) = 1 + A020760. - R. J. Mathar, Mar 08 2012

Crossrefs

Programs

Formula

a(n) = cos(Pi*n/3)/3+sqrt(3)*sin(Pi*n/3)+2*(-1)^n/3. - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 19 2016: (Start)
G.f.: (1+x+2*x^2)/(1+x^3).
a(n) + a(n-3) = 0 for n>2. (End)

A374957 Decimal expansion of the circumradius of a regular heptagon with unit side length.

Original entry on oeis.org

1, 1, 5, 2, 3, 8, 2, 4, 3, 5, 4, 8, 1, 2, 4, 3, 2, 5, 2, 6, 2, 0, 5, 7, 5, 1, 1, 1, 7, 7, 3, 4, 2, 7, 5, 5, 6, 7, 2, 2, 2, 5, 0, 9, 4, 3, 8, 0, 3, 1, 6, 0, 5, 8, 1, 0, 3, 1, 5, 5, 3, 1, 4, 8, 2, 3, 3, 4, 2, 6, 6, 7, 1, 3, 8, 9, 2, 3, 9, 7, 9, 8, 1, 8, 9, 5, 5, 5, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.15238243548124325262057511177342755672225094380...
		

Crossrefs

Cf. A374971 (apothem), A374972 (sagitta), A178817 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon).

Programs

Formula

Equals csc(Pi/7)/2 = A121598/2.
Equals 1/(2*sin(Pi/7)) = 1/A272487.
Equals A374971/cos(Pi/7) = A374971/A073052.
Largest of the 6 real-valued roots of 7*x^6-14*x^4+7*x^2-1=0. - R. J. Mathar, Aug 29 2025

A375151 Decimal expansion of the circumradius of a regular 9-gon with unit side length.

Original entry on oeis.org

1, 4, 6, 1, 9, 0, 2, 2, 0, 0, 0, 8, 1, 5, 4, 3, 6, 2, 6, 1, 1, 6, 3, 7, 7, 2, 0, 6, 6, 8, 3, 1, 4, 5, 8, 5, 1, 9, 3, 6, 7, 5, 2, 8, 3, 0, 7, 5, 9, 4, 6, 2, 2, 4, 0, 8, 5, 5, 3, 1, 8, 4, 9, 3, 1, 7, 7, 6, 7, 2, 5, 8, 1, 3, 9, 9, 6, 7, 5, 9, 0, 4, 9, 1, 9, 6, 2, 7, 7, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2024

Keywords

Examples

			1.46190220008154362611637720668314585193675283...
		

Crossrefs

Cf. A375152 (apothem), A375153 (sagitta), A256853 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon)

Programs

Formula

Equals csc(Pi/9)/2 = A121602/2.
Equals 1/(2*sin(Pi/9)) = 1/A272488.
Equals A375152/cos(Pi/9) = A375152/A019879.
Equals A375152 + A375153.
Largest of the 6 real-valued roots of 3*x^6-9*x^4+6*x^2-1=0. - R. J. Mathar, Aug 29 2025

A375190 Decimal expansion of the circumradius of a regular 11-gon with unit side length.

Original entry on oeis.org

1, 7, 7, 4, 7, 3, 2, 7, 6, 6, 4, 4, 2, 1, 1, 1, 6, 6, 2, 8, 5, 6, 8, 3, 1, 9, 6, 1, 1, 6, 8, 9, 7, 5, 8, 4, 6, 1, 0, 5, 3, 7, 6, 3, 8, 2, 1, 2, 3, 0, 5, 1, 0, 6, 9, 5, 5, 2, 5, 8, 2, 9, 4, 3, 1, 5, 7, 3, 0, 0, 4, 9, 5, 8, 2, 6, 1, 6, 6, 9, 5, 0, 0, 1, 7, 7, 9, 5, 9, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Examples

			1.774732766442111662856831961168975846105376382123...
		

Crossrefs

Cf. A375191 (apothem), A375192 (sagitta), A256854 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A188887 (12-gon).
Cf. A272489.

Programs

Formula

Equals csc(Pi/11)/2.
Equals 1/(2*sin(Pi/11)) = 1/A272489.
Equals A375191/cos(Pi/11).
Equals A375191 + A375192.

A023116 Signature sequence of 1/sqrt(3) (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5
Offset: 1

Views

Author

Keywords

Comments

1/sqrt(3) = 0.5773502691896257645091487805019574556476017512701268760186023264839776723029333456937153955857495251...
which is different from the constant x that defines A084822, which is
x=0.5772846089557105648944851585150204938530753765812706743158491735333298369
so the two sequences are different. Where do they first differ? - N. J. A. Sloane, Jan 20 2023
The first difference is A084822(2793) = 1 and a(2793) = 57. - Paul D. Hanna and Michael S. Branicky, Jan 21 2023

References

  • Clark Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

A145439 Decimal expansion of Sum_{k>=0} binomial(4*k, 2*k)/2^(6*k).

Original entry on oeis.org

1, 1, 1, 5, 3, 5, 5, 0, 7, 1, 6, 5, 0, 4, 1, 0, 5, 4, 0, 7, 6, 7, 0, 5, 8, 3, 7, 4, 5, 5, 5, 8, 3, 0, 9, 3, 7, 9, 4, 5, 8, 2, 7, 1, 8, 4, 4, 6, 4, 5, 8, 5, 7, 2, 4, 6, 6, 0, 4, 5, 5, 2, 9, 6, 8, 7, 0, 5, 2, 6, 3, 0, 2, 1, 4, 0, 6, 0, 6, 0, 2, 3, 8, 4, 8, 5, 0, 3, 6, 7, 2, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			1.11535507165041054076705837455583093794582718446458...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.49.

Crossrefs

Programs

  • Maple
    1/2*(1+1/3*3^(1/2))*2^(1/2);
  • Mathematica
    RealDigits[1/Sqrt[2] + 1/Sqrt[6], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sqrt(6) + 1/sqrt(2) \\ Michel Marcus, Jan 15 2021

Formula

Equals (1+A020760)*A010503.
Equals A020763 + A010503. - Artur Jasinski, Dec 20 2020
The minimal polynomial is 9*x^4 - 12*x^2 + 1. - Joerg Arndt, Sep 20 2023
Equals 2F1(1/4,3/4; 1/2; 1/4). - R. J. Mathar, Aug 02 2024
Equals Product_{k>=1} (1 - (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

Extensions

Typo in definition corrected by R. J. Mathar, Feb 09 2009

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A020772 Decimal expansion of 1/sqrt(15).

Original entry on oeis.org

2, 5, 8, 1, 9, 8, 8, 8, 9, 7, 4, 7, 1, 6, 1, 1, 2, 5, 6, 7, 8, 6, 1, 7, 6, 9, 3, 3, 1, 8, 8, 2, 6, 6, 4, 0, 7, 2, 2, 1, 9, 4, 7, 8, 0, 3, 5, 2, 7, 7, 2, 7, 2, 1, 7, 7, 2, 5, 0, 4, 9, 1, 7, 7, 4, 0, 8, 9, 8, 8, 7, 2, 7, 9, 5, 7, 9, 8, 6, 0, 2, 2, 3, 4, 6, 1, 9, 1, 5, 8, 4, 5, 7, 2, 4, 4, 9, 0, 1
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(15) = 0.258198889747161125678617693318826640722194780352772721772504917740898872796... [Vladimir Joseph Stephan Orlovsky, May 30 2010]

Programs

Formula

Equals 1/A010472 = A020760 * A020762. - R. J. Mathar, Nov 19 2024

A084822 Signature sequence of x, where x=0.577284608955710564894... (A084823) is the unique number between 0 and 1 having the property that the signature sequence of x is equal to the continued fraction expansion of x.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3
Offset: 1

Views

Author

Paul D. Hanna, Jun 04 2003

Keywords

Comments

The initial terms are close to those of A023116 since x is close to 1/sqrt(3)=A020760. (See A023116.) - R. J. Mathar, Sep 17 2008
Where do they first differ? - N. J. A. Sloane, Jan 20 2023
The first difference is a(2793) = 1 and A023116(2793) = 57. - Paul D. Hanna and Michael S. Branicky, Jan 21 2023

Examples

			Given x = 0.5772846089557105648944851585150204938530... (A084823), the continued fraction of x equals the signature sequence of x.
To obtain the signature sequence of x, arrange the numbers i+j*x (i,j >= 1) in increasing order like so:
[1+1*x, 1+2*x, 2+1*x, 1+3*x, 2+2*x, 1+4*x, 3+1*x, 2+3*x, 1+5*x, 3+2*x, 2+4*x, 1+6*x, 4+1*x, 3+3*x, 2+5*x, 1+7*x, 4+2*x, 3+4*x, 2+6*x, 5+1*x, 1+8*x, 4+3*x, 3+5*x, 2+7*x, 5+2*x, 1+9*x, 4+4*x, 3+6*x, 6+1*x, 2+8*x, 5+3*x, 1+10*x, 4+5*x, 3+7*x, 6+2*x, 2+9*x, 5+4*x, 1+11*x, 4+6*x, 7+1*x, 3+8*x, 6+3*x, 2+10*x, 5+5*x, 1+12*x, 4+7*x, 7+2*x, 3+9*x, 6+4*x, 2+11*x, ...];
then the sequence of i's is the signature of x, and forms this sequence.
		

Crossrefs

Cf. A084823 (decimal expansion).
See also A023116.
Previous Showing 31-40 of 56 results. Next