cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A157697 Decimal expansion of sqrt(2/3).

Original entry on oeis.org

8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
The eccentricity of the ellipse of minimum area that is circumscribing two equal and externally tangent circles (Kotani, 1995). - Amiram Eldar, Mar 06 2022
The standard deviation of a roll of a 3-sided die. - Mohammed Yaseen, Feb 23 2023

Examples

			0.81649658092772603273242802490196379732198249355222...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (168) on page 32.

Crossrefs

Programs

Formula

Equals 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
From Michal Paulovic, Dec 08 2022: (Start)
Equals 2 * A020763.
Has periodic continued fraction expansion [0, 1, 4; 2, 4]. (End)
Equals exp(-arctanh(1/5)). - Amiram Eldar, Jul 10 2023
Equals Product_{k>=1} (1 + (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

A092259 Numbers that are congruent to {4, 8} mod 12.

Original entry on oeis.org

4, 8, 16, 20, 28, 32, 40, 44, 52, 56, 64, 68, 76, 80, 88, 92, 100, 104, 112, 116, 124, 128, 136, 140, 148, 152, 160, 164, 172, 176, 184, 188, 196, 200, 208, 212, 220, 224, 232, 236, 244, 248, 256, 260, 268, 272, 280, 284, 292, 296, 304, 308, 316, 320, 328, 332
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 19 2004

Keywords

Crossrefs

Programs

Formula

G.f.: 4*x*(1+x+x^2) / ( (1+x)*(x-1)^2 ).
a(n) = 4 * A001651(n).
Iff phi(n) = phi(3n/2), then n is in A069587. - Labos Elemer, Feb 25 2004
a(n) = 12*(n-1)-a(n-1) (with a(1)=4). - Vincenzo Librandi, Nov 16 2010
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = 6n - 3 - (-1)^n.
a(2n) = A017617(n-1) for n>1, a(2n-1) = A017569(n-1) for n>1.
a(n) = -a(1-n), a(n) = A092899(n) + 1 for n>0. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*sqrt(3)/36. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1/sqrt(2) + 1/sqrt(6) (A145439).
Product_{n>=1} (1 + (-1)^n/a(n)) = sqrt(2/3) (A157697). (End)

Extensions

Edited and extended by Ray Chandler, Feb 21 2004

A127692 Expansion of psi(x^4) + x * psi(x^12) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Jan 19 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) = 1 if n is four times a triangular number or one more than twelve times a triangular number else 0. - Michael Somos, Jul 19 2012

Examples

			G.f. = 1 + x + x^4 + x^12 + x^13 + x^24 + x^37 + x^40 + x^60 + x^73 + x^84 + ...
G.f. = q + q^3 + q^9 + q^25 + q^27 + q^49 + q^75 + q^81 + q^121 + q^147 + q^169 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = issquare(2*n + 1) + issquare(6*n + 3)};
    
  • PARI
    {a(n) = n = 2*n + 1; issquare(n) || issquare(3*n)};

Formula

Euler transform of period 24 sequence [ 1, -1, 0, 1, -1, 1, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1, ...].
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(3^e) = 1, else b(p^e) = (1 + (-1)^e)/2.
a(3*n + 1) = a(n), a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(6*n + 3) = 0.
a(2*n) = A005369(n). a(4*n) = A010054(n). a(6*n) = A089806(n). a(12*n) = A080995(n).
G.f.: Sum_{k>0} x^(2k(k-1)) +x^(6k(k-1)+1) = Product_{k>0} (1-x^(24k)) (1-x^(24k-5)) (1-x^(24k-7)) (1-x^(24k-17)) (1-x^(24k-19)) (1+x^(12k-1)) (1+x^(12k-4)) (1+x^(12k-6)) (1+x^(12k-8)) (1+x^(12k-11)).
From Michael Somos, Jul 19 2012: (Start)
Expansion of f(x, -x^5) * f(-x^4, -x^8) / f(x, -x) in powers of x where f(,) is the Ramanujan two-variable theta function.
G.f.: (Sum_{k in Z} x^(2*k*(k + 1)) + x^(6*k*(k + 1) + 1)) / 2.
a(n) = A195198(2*n + 1). (End)
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = 1/sqrt(2) + 1/sqrt(6) = 1.115355... (A145439). - Amiram Eldar, Dec 29 2023

A337402 Decimal expansion of the length of third shortest diagonal in a regular 12-gon with unit edge length.

Original entry on oeis.org

3, 3, 4, 6, 0, 6, 5, 2, 1, 4, 9, 5, 1, 2, 3, 1, 6, 2, 2, 3, 0, 1, 1, 7, 5, 1, 2, 3, 6, 6, 7, 4, 9, 2, 8, 1, 3, 8, 3, 7, 4, 8, 1, 5, 5, 3, 3, 9, 3, 7, 5, 7, 1, 7, 3, 9, 8, 1, 3, 6, 5, 8, 9, 0, 6, 1, 1, 5, 7, 8, 9, 0, 6, 4, 2, 1, 8, 1, 8, 0, 7, 1, 5, 4, 5, 5, 1
Offset: 1

Views

Author

Mohammed Yaseen, Aug 26 2020

Keywords

Comments

The distinct diagonal lengths in a regular 12-gon ABC...JKL with unit edge length are
AC = sqrt(2 + sqrt(3)) = sqrt(2)/(-1+sqrt(3)) = A188887
AD = sqrt(4 + 2*sqrt(3)) = 2 /(-1+sqrt(3)) = A090388
AE = sqrt(6 + 3*sqrt(3)) = sqrt(6)/(-1+sqrt(3))
AF = sqrt(7 + 4*sqrt(3)) = (1+sqrt(3))/(-1+sqrt(3)) = A019973
AG = sqrt(8 + 4*sqrt(3)) = 2*sqrt(2)/(-1+sqrt(3)) = A214726

Examples

			3.34606521495123162230117512366749281383748155339375...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sqrt[6+3Sqrt[3]],10,100]] (* Paolo Xausa, Oct 19 2023 *)
  • PARI
    sqrt(6 + 3*sqrt(3)) \\ Michel Marcus, Aug 26 2020

Formula

Equals sin(Pi/3)/sin(Pi/12) = sqrt(2) + 2*cos(Pi/12) = sqrt(3*cot(Pi/12)).
Equals sqrt(6 + 3*sqrt(3)) = sqrt(6)/(-1+sqrt(3)) = (3+sqrt(3))/sqrt(2).
Equals 3*A145439.
Equals Gamma(1/24)*Gamma(11/24)/(Gamma(5/24)*Gamma(7/24)) [Zucker] - R. J. Mathar, Jun 24 2024
Showing 1-4 of 4 results.