cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A264605 Number of self-dual negacyclic codes of length 4n over GF(3), where 4n runs through the numbers congruent to 4 or 8 mod 12 (cf. A092259).

Original entry on oeis.org

2, 2, 2, 8, 8, 2, 32, 8, 32, 8, 2, 8, 8, 32, 8, 8, 32, 32, 8, 8, 8, 2, 32, 512, 32, 8, 32, 2048, 8, 8, 8, 8, 32, 512
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2015

Keywords

Crossrefs

Cf. A092259.

A092260 Permutation of natural numbers generated by 6-rowed array shown below.

Original entry on oeis.org

1, 11, 2, 13, 10, 3, 23, 14, 9, 4, 25, 22, 15, 8, 5, 35, 26, 21, 16, 7, 6, 37, 34, 27, 20, 17, 12, 47, 38, 33, 28, 19, 18, 49, 46, 39, 32, 29, 24, 59, 50, 45, 40, 31, 30, 61, 58, 51, 44, 41, 36, 71, 62, 57, 52, 43, 42, 73, 70, 63, 56, 53, 48, 83, 74, 69, 64, 55, 54, 85, 82, 75
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 19 2004

Keywords

Comments

1 11 13 23 25 35 37 47 49 59... (A091998)
2 10 14 22 26 34 38 46 50 58... (A091999)
3 9 15 21 27 33 39 45 51 57... (A016945)
4 8 16 20 28 32 40 44 52 56... (A092259)
5 7 17 19 29 31 41 43 53 55... (A092242)
6 12 18 24 30 36 42 48 54 60... (A008588, excluding initial term)
For such arrays A_k, here A_6, see a W. Lang comment on A113807, the A_7 case. However, to get the array A_6 one should take the last line as the first one and add a 0 in front (thus obtaining a permutation of the nonnegative integers). - Wolfdieter Lang, Feb 02 2012

Crossrefs

Extensions

Edited and extended by Ray Chandler, Feb 21 2004

A157697 Decimal expansion of sqrt(2/3).

Original entry on oeis.org

8, 1, 6, 4, 9, 6, 5, 8, 0, 9, 2, 7, 7, 2, 6, 0, 3, 2, 7, 3, 2, 4, 2, 8, 0, 2, 4, 9, 0, 1, 9, 6, 3, 7, 9, 7, 3, 2, 1, 9, 8, 2, 4, 9, 3, 5, 5, 2, 2, 2, 3, 3, 7, 6, 1, 4, 4, 2, 3, 0, 8, 5, 5, 7, 5, 0, 3, 2, 0, 1, 2, 5, 8, 1, 9, 1, 0, 5, 0, 0, 8, 8, 4, 6, 6, 1, 9, 8, 1, 1, 0, 3, 4, 8, 8, 0, 0, 7, 8, 2, 7, 2, 8, 6, 4
Offset: 0

Views

Author

R. J. Mathar, Mar 04 2009

Keywords

Comments

Height (from a vertex to the opposite face) of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
The eccentricity of the ellipse of minimum area that is circumscribing two equal and externally tangent circles (Kotani, 1995). - Amiram Eldar, Mar 06 2022
The standard deviation of a roll of a 3-sided die. - Mohammed Yaseen, Feb 23 2023

Examples

			0.81649658092772603273242802490196379732198249355222...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (168) on page 32.

Crossrefs

Programs

Formula

Equals 1 - (1/2)/2 + (1*3)/(2*4)/2^2 - (1*3*5)/(2*4*6)/2^3 + ... [Jolley]
Equals Sum_{n>=0} (-1)^n*binomial(2n,n)/8^n = 1/A115754. Averaging this constant with sqrt(2) = A002193 = Sum_{n>=0} binomial(2n,n)/8^n yields A145439.
From Michal Paulovic, Dec 08 2022: (Start)
Equals 2 * A020763.
Has periodic continued fraction expansion [0, 1, 4; 2, 4]. (End)
Equals exp(-arctanh(1/5)). - Amiram Eldar, Jul 10 2023
Equals Product_{k>=1} (1 + (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

A119315 Numbers with composite numbers as third divisors.

Original entry on oeis.org

4, 8, 9, 16, 20, 25, 27, 28, 32, 40, 44, 49, 52, 56, 64, 68, 76, 80, 81, 88, 92, 99, 100, 104, 112, 116, 117, 121, 124, 125, 128, 136, 140, 148, 152, 153, 160, 164, 169, 171, 172, 176, 184, 188, 196, 200, 207, 208, 212, 220, 224, 232, 236, 243, 244, 248, 256, 260
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A067029(m) > 1 and (A001221(m) = 1 or A020639(m)^2 <= A119288(m)).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 3, 23, 221, 2194, 21895, 219307, 2193435, 21937419, 219396872, 2193979781, ... . Apparently, the asymptotic density of this sequence exists and equals 0.219... . - Amiram Eldar, Jul 02 2022
Numbers k such that A292269(k) is composite, which must then be a square of prime (A001248) by necessity. - Antti Karttunen, Jul 02 2022

Crossrefs

Complement of A119316.
A025475, A092259, and A355445 are subsequences.
Cf. A000005, A001221, A001248, A002808, A020639, A027750, A067029, A292269, A355453 (characteristic function).
Cf. also A355455.

Programs

  • Mathematica
    Select[Range[300],CompositeQ[Divisors[#][[3]]]&]//Quiet (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 03 2021 *)
    Select[Range[260], (f = FactorInteger[#])[[1, 2]] > 1 && (Length[f] == 1 || f[[1, 1]]^2 < f[[2, 1]]) &] (* Amiram Eldar, Jul 02 2022 *)
  • PARI
    A355453(n) = ((n>1) && !isprime(n) && !isprime(divisors(n)[3]));
    isA119315(n) = A355453(n); \\ Antti Karttunen, Jul 02 2022

A145439 Decimal expansion of Sum_{k>=0} binomial(4*k, 2*k)/2^(6*k).

Original entry on oeis.org

1, 1, 1, 5, 3, 5, 5, 0, 7, 1, 6, 5, 0, 4, 1, 0, 5, 4, 0, 7, 6, 7, 0, 5, 8, 3, 7, 4, 5, 5, 5, 8, 3, 0, 9, 3, 7, 9, 4, 5, 8, 2, 7, 1, 8, 4, 4, 6, 4, 5, 8, 5, 7, 2, 4, 6, 6, 0, 4, 5, 5, 2, 9, 6, 8, 7, 0, 5, 2, 6, 3, 0, 2, 1, 4, 0, 6, 0, 6, 0, 2, 3, 8, 4, 8, 5, 0, 3, 6, 7, 2, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Examples

			1.11535507165041054076705837455583093794582718446458...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, 1996, 4.1.49.

Crossrefs

Programs

  • Maple
    1/2*(1+1/3*3^(1/2))*2^(1/2);
  • Mathematica
    RealDigits[1/Sqrt[2] + 1/Sqrt[6], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sqrt(6) + 1/sqrt(2) \\ Michel Marcus, Jan 15 2021

Formula

Equals (1+A020760)*A010503.
Equals A020763 + A010503. - Artur Jasinski, Dec 20 2020
The minimal polynomial is 9*x^4 - 12*x^2 + 1. - Joerg Arndt, Sep 20 2023
Equals 2F1(1/4,3/4; 1/2; 1/4). - R. J. Mathar, Aug 02 2024
Equals Product_{k>=1} (1 - (-1)^k/A092259(k)). - Amiram Eldar, Nov 24 2024

Extensions

Typo in definition corrected by R. J. Mathar, Feb 09 2009

A119314 Complement of A119313.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 20, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 47, 49, 52, 53, 56, 59, 61, 64, 67, 68, 71, 73, 76, 79, 80, 81, 83, 88, 89, 92, 97, 99, 100, 101, 103, 104, 107, 109, 112, 113, 116, 117, 121, 124, 125, 127, 128, 131, 136, 137
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2006

Keywords

Comments

m is a term iff A001221(m) <= 1 or (A067029(m) > 1 and A020639(m)^2 <= A119288(m)).

Crossrefs

Union of A119315 and A008578.
(Intersection with A119316) = A008578.
A000961 and A092259 are subsequences.

Programs

  • Mathematica
    Select[Range[140], !CompositeQ[#] || ((f = FactorInteger[#])[[1, 2]] > 1 && (Length[f] == 1 || f[[1, 1]]^2 < f[[2, 1]])) &] (* Amiram Eldar, Jul 02 2022 *)

A174398 Numbers that are congruent to {1, 4, 5, 8} mod 12.

Original entry on oeis.org

1, 4, 5, 8, 13, 16, 17, 20, 25, 28, 29, 32, 37, 40, 41, 44, 49, 52, 53, 56, 61, 64, 65, 68, 73, 76, 77, 80, 85, 88, 89, 92, 97, 100, 101, 104, 109, 112, 113, 116, 121, 124, 125, 128, 133, 136, 137, 140, 145, 148, 149, 152, 157, 160, 161, 164, 169, 172, 173
Offset: 1

Views

Author

Gary Detlefs, Mar 18 2010

Keywords

Comments

Numbers k such that k*(k + 3)/4 + (k + 1)*(k + 2)/6 or k*(5*k + 3)/12 + 1/3 is a nonnegative integer. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

  • Magma
    [n : n in [0..200] | n mod 12 in [1, 4, 5, 8]]; // Wesley Ivan Hurt, Jun 07 2016
  • Maple
    seq(3*n +(-1)^floor(n/2), n=0..50);
  • Mathematica
    Table[(1+I)*(3*(n-n*I+I-1)+I^(1-n)-I^n)/2, {n, 60}] (* Wesley Ivan Hurt, Jun 07 2016 *)
    Select[Range[200],MemberQ[{1,4,5,8},Mod[#,12]]&] (* or *) LinearRecurrence[ {2,-2,2,-1},{1,4,5,8},60] (* Harvey P. Dale, Aug 02 2020 *)

Formula

a(n) = 3*n - 3 + (-1)^floor((n-1)/2).
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: x*(1 + 2*x - x^2 + 4*x^3)/((1 - x)^2*(1 + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = (1 + i)*(3*(n - n*i + i - 1) + i^(1-n) - i^n)/2, where i=sqrt(-1).
a(2*k) = A092259(k), a(2*k-1) = A087445(k). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/6 + log(2)/2. - Amiram Eldar, Dec 31 2021

A306199 Numbers k having the property that tau(4*k) < tau(3*k) where tau = A000005.

Original entry on oeis.org

4, 8, 16, 20, 28, 32, 40, 44, 48, 52, 56, 64, 68, 76, 80, 88, 92, 96, 100, 104, 112, 116, 124, 128, 136, 140, 148, 152, 160, 164, 172, 176, 184, 188, 192, 196, 200, 208, 212, 220, 224, 232, 236, 240
Offset: 1

Views

Author

Gary Detlefs, Jan 28 2019

Keywords

Comments

All terms are divisible by 4.
A092259 (numbers congruent to {4,8} (mod 12)) is a subset.
Sequence also includes all numbers of the form 48*k where k is congruent to {1,2} (mod 3) (A001651).
Additional entries of the form 48k, where k is divisible by three have k values of 12*{1,2,4,5,7,8,10,11,12,13,14,16,17,19,20,22,23,24,...}
From Robert Israel, Jan 29 2019: (Start)
Numbers k such that A007814(k)- 2*A007949(k) >= 2.
Sequence is closed under multiplication. (End)
The asymptotic density of this sequence is 2/11. - Amiram Eldar, Mar 25 2021

Examples

			tau(4*20) = 10, tau(3*20)=12. So 20 is in the sequence.
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 300 do if tau(4*n) < tau(3*n) then print(n) fi od
  • Mathematica
    Select[Range[4, 240, 4], #1 < #2 & @@ DivisorSigma[0, # {4, 3}] &] (* Michael De Vlieger, Jan 29 2019 *)
    Select[Range[240], IntegerExponent[#, 2] - 2 * IntegerExponent[#, 3] >= 2 &] (* Amiram Eldar, Mar 25 2021 *)
Showing 1-8 of 8 results.