A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
A386271
Expansion of 1/(1 - 49*x)^(2/7).
Original entry on oeis.org
1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0
Cf.
A020918 (k=2, m=7),
A020920 (k=2, m=9),
A034835 (k=7, m=1),
A034977 (k=8, m=1),
A035024 (k=9, m=1),
A216702 (k=4, m=3),
A216703 (k=7, m=6),
A354019 (k=6, m=1), this sequence (k=7, m=2),
A386272 (k=7, m=3),
A386273 (k=7, m=4),
A386274 (k=7, m=5).
A002738
Coefficients for extrapolation.
Original entry on oeis.org
3, 60, 630, 5040, 34650, 216216, 1261260, 7001280, 37413090, 193993800, 981608628, 4867480800, 23728968900, 114011377200, 540972351000, 2538963567360, 11802213457650, 54396360988200, 248812984520100, 1130341536324000, 5103492036502860, 22913637714910800
Offset: 0
- J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[3*Binomial(2*n+3,n)*Binomial(n+3,3): n in [0..30]]; // G. C. Greubel, Mar 21 2022
-
Table[Total[Inverse[HilbertMatrix[n]][[n - 2]]], {n, 3, 25}] (* T. D. Noe, May 02 2011 *)
-
[3*binomial(2*n+3,3)*binomial(2*n,n) for n in (0..30)] # G. C. Greubel, Mar 21 2022
A382332
Expansion of 1/(1 - 4*x/(1-x)^2)^(7/2).
Original entry on oeis.org
1, 14, 154, 1470, 12866, 106078, 837018, 6385262, 47420674, 344553902, 2458367898, 17272647966, 119770278978, 821068784382, 5572735854234, 37490757508302, 250247764120578, 1658681038111566, 10924592141535898, 71541334475749502, 466060971286552642
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - 4*x/(1-x)^2)^(7/2))); // Vincenzo Librandi, May 12 2025
-
Table[Sum[(-4)^k* Binomial[-7/2,k]*Binomial[n+k-1, n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n, (-4)^k*binomial(-7/2, k)*binomial(n+k-1, n-k));
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
Comments