A198065
Triangle read by rows (n >= 0, 0 <= k <= n, m = 5); T(n,k) = Sum{j=0..m} Sum{i=0..m} (-1)^(j+i)*C(i,j)*n^j*k^(m-j).
Original entry on oeis.org
0, 1, 1, 32, 6, 32, 243, 63, 63, 243, 1024, 364, 192, 364, 1024, 3125, 1365, 665, 665, 1365, 3125, 7776, 3906, 2016, 1458, 2016, 3906, 7776, 16807, 9331, 5187, 3367, 3367, 5187, 9331, 16807, 32768, 19608, 11648, 7448, 6144, 7448, 11648, 19608, 32768, 59049
Offset: 0
[0] 0
[1] 1, 1
[2] 32, 6, 32
[3] 243, 63, 63, 243
[4] 1024, 364, 192, 364, 1024
[5] 3125, 1365, 665, 665, 1365, 3125
[6] 7776, 3906, 2016, 1458, 2016, 3906, 7776
[7] 16807, 9331, 5187, 3367, 3367, 5187, 9331, 16807
-
&cat[[n*(k^2-k*n+n^2)*(3*k^2-3*k*n+n^2): k in [0..n]]: n in [0..9]]; // Bruno Berselli, Nov 02 2011
-
A198065 := (n,k) -> 3*n*k^4-6*k^3*n^2+7*k^2*n^3-4*k*n^4+n^5:
A254472
Sixth partial sums of sixth powers (A001014).
Original entry on oeis.org
1, 70, 1134, 9870, 59220, 275562, 1063530, 3552978, 10577385, 28652260, 71725108, 167911380, 371057232, 779831820, 1568210220, 3032733564, 5663906745, 10251608346, 18037546450, 30931714450, 51814612980, 84952851750, 136562787270, 215565263550, 334584493425
Offset: 1
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums: 1, 70, 1134, 9870, 59220, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers.
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
-
[n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(-3+5*n+n^2)* (3+7*n+n^2)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
-
Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (- 3 + 5 n + n^2) (3 + 7 n + n^2)/665280, {n, 22}] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^13, {x, 0, 28}], x]
Nest[Accumulate,Range[30]^6,6] (* Harvey P. Dale, Oct 02 2015 *)
-
vector(50,n,n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280) \\ Derek Orr, Feb 19 2015
A243201
Odd octagonal numbers indexed by triangular numbers.
Original entry on oeis.org
1, 21, 133, 481, 1281, 2821, 5461, 9633, 15841, 24661, 36741, 52801, 73633, 100101, 133141, 173761, 223041, 282133, 352261, 434721, 530881, 642181, 770133, 916321, 1082401, 1270101, 1481221, 1717633, 1981281, 2274181, 2598421, 2956161, 3349633, 3781141, 4253061, 4767841, 5328001
Offset: 0
a(2) = 133 because the second triangular number is 3 and third odd octagonal number is 133.
a(3) = 481 because the third triangular number is 6 and the sixth odd octagonal number is 481.
a(4) = 1281 because the fourth triangular number is 10 and the tenth odd octagonal number is 1281.
Row 5 of
A059259 (coefficients of 1 + 4*n + 7*n^2 + 6*n^3 + 3*n^4 + 0*n^5 which is a formula for the within sequence).
Diagonal T(n + 1, n) of
A219069, n > 0.
-
[3*n^4+6*n^3+7*n^2+4*n+1: n in [0..40]]; // Bruno Berselli, Jun 03 2014
-
Table[((3 n^2 + 3 n + 2)^2 - 1)/3, {n, 0, 39}] (* Alonso del Arte, Jun 01 2014 *)
-
[3*n^4+6*n^3+7*n^2+4*n+1 for n in (0..40)] # Bruno Berselli, Jun 03 2014
A254872
Seventh partial sums of sixth powers (A001014).
Original entry on oeis.org
1, 71, 1205, 11075, 70295, 345857, 1409387, 4962365, 15539750, 44192010, 115917118, 283828498, 654885730, 1434717550, 3002927770, 6035661334, 11699568079, 21951176425, 39988722875, 70920437325, 122735050305
Offset: 1
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums: 1, 70, 1134, 9870, 59220, ... (A254472)
Seventh partial sums: 1, 71, 1205, 11075, 70295, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf.
A000540,
A001014,
A022522,
A101093,
A254472,
A254640,
A254645,
A254683,
A254869,
A254870,
A254871.
-
Table[(n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n) (- 49 + 147 n^2 + 42 n^3 + 3 n^4))/51891840, {n, 21}] (* or *)
CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^14, {x, 0, 20}], x]
A069476
First differences of A069475, successive differences of (n+1)^6-n^6.
Original entry on oeis.org
1800, 2520, 3240, 3960, 4680, 5400, 6120, 6840, 7560, 8280, 9000, 9720, 10440, 11160, 11880, 12600, 13320, 14040, 14760, 15480, 16200, 16920, 17640, 18360, 19080, 19800, 20520, 21240, 21960, 22680, 23400, 24120, 24840, 25560, 26280, 27000
Offset: 0
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002
Offset changed from 1 to 0 and added a(0)=1800 by
Bruno Berselli, Feb 25 2015
A181125
Difference of two positive 6th powers.
Original entry on oeis.org
0, 63, 665, 728, 3367, 4032, 4095, 11529, 14896, 15561, 15624, 31031, 42560, 45927, 46592, 46655, 70993, 102024, 113553, 116920, 117585, 117648, 144495, 215488, 246519, 258048, 261415, 262080, 262143, 269297, 413792, 468559, 484785, 515816
Offset: 1
-
nn=10^10; p=6; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]
Original entry on oeis.org
540, 2100, 5460, 11340, 20460, 33540, 51300, 74460, 103740, 139860, 183540, 235500, 296460, 367140, 448260, 540540, 644700, 761460, 891540, 1035660, 1194540, 1368900, 1559460, 1766940, 1992060, 2235540, 2498100, 2780460, 3083340
Offset: 0
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002
-
Differences[Table[(n + 1)^6 - n^6, {n, 0, 30}], 2] (* Harvey P. Dale, Dec 27 2011 *)
Offset changed from 1 to 0 and added a(0)=540 by
Bruno Berselli, Feb 25 2015
A069475
First differences of A069474, successive differences of (n+1)^6-n^6.
Original entry on oeis.org
1560, 3360, 5880, 9120, 13080, 17760, 23160, 29280, 36120, 43680, 51960, 60960, 70680, 81120, 92280, 104160, 116760, 130080, 144120, 158880, 174360, 190560, 207480, 225120, 243480, 262560, 282360, 302880, 324120, 346080, 368760, 392160, 416280
Offset: 0
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002
Offset changed from 1 to 0 and added a(0)=1560 by
Bruno Berselli, Feb 25 2015
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
Comments