A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.
0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1
A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.
2, 9, 375, 15625
Offset: 1
Comments
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 9: {2,2} 375: {2,3,3,3} 15625: {3,3,3,3,3,3}
Crossrefs
Programs
-
Mathematica
Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]
Formula
Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.
A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1
Comments
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Examples
The initial terms count the following partitions: 1: (1) 2: (1,1) 3: (1,1,1) 4: (2,2) 4: (1,1,1,1) 5: (2,2,1) 5: (1,1,1,1,1) 6: (2,2,1,1) 6: (1,1,1,1,1,1) 7: (2,2,1,1,1) 7: (1,1,1,1,1,1,1) 8: (2,2,2,2) 8: (2,2,1,1,1,1) 8: (1,1,1,1,1,1,1,1) 9: (2,2,2,2,1) 9: (2,2,1,1,1,1,1) 9: (1,1,1,1,1,1,1,1,1)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]
A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1
Keywords
Comments
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Examples
The initial terms count the following partitions: 1: (1) 2: (2) 3: (3) 4: (4) 4: (2,2) 5: (5) 6: (6) 6: (3,3) 7: (7) 8: (8) 8: (4,4) 9: (9) 9: (5,4) 9: (3,3,3) 10: (10) 10: (5,5) 11: (11) 11: (4,4,3) 11: (3,3,3,2) 12: (12) 12: (6,6) 12: (4,4,4)
Crossrefs
Programs
-
Maple
f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc: map(f, [$1..70]); # Robert Israel, May 09 2024
-
Mathematica
Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
-
PARI
a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025
Extensions
a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025
A082288 n>1 appears bigomega(n) times, where bigomega(n)=A001222(n) is the number of prime factors of n (with repetition), a(1)=1.
1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 30, 30, 30, 31, 32, 32, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36
Offset: 1
Keywords
Comments
Crossrefs
Cf. A082287.
A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.
1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1
Keywords
Comments
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 5: {3} 7: {4} 9: {2,2} 11: {5} 13: {6} 17: {7} 19: {8} 23: {9} 25: {3,3} 29: {10} 31: {11} 37: {12} 41: {13} 43: {14} 47: {15} 49: {4,4} 53: {16}
Crossrefs
Programs
-
Mathematica
Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]
A336425 Number of ways to choose a divisor with distinct prime exponents of a divisor with distinct prime exponents of n!.
1, 1, 3, 5, 24, 38, 132, 195, 570, 1588, 4193, 6086, 14561, 19232, 37142, 106479, 207291, 266871, 549726, 674330, 1465399, 3086598, 5939574, 7182133, 12324512, 28968994, 46819193, 82873443, 165205159, 196666406, 350397910, 406894074, 593725529, 1229814478, 1853300600, 4024414209, 6049714096, 6968090487, 9700557121, 16810076542, 26339337285
Offset: 0
Keywords
Examples
The a(4) = 24 divisors of divisors: 1/1 2/1 3/1 4/1 8/1 12/1 24/1 2/2 3/3 4/2 8/2 12/2 24/2 4/4 8/4 12/3 24/3 8/8 12/4 24/4 12/12 24/8 24/12 24/24
Links
- Max Alekseyev, Table of n, a(n) for n = 0..85
Crossrefs
A336422 is the non-factorial generalization.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327526 gives the maximum divisor of n with equal prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.
A336414 counts divisors of n! with distinct prime exponents.
A336415 counts divisors of n! with equal prime exponents.
Programs
-
Mathematica
strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n]; Table[Total[Cases[Divisors[n!],d_?strsigQ:>Count[Divisors[d],e_?strsigQ]]],{n,0,20}]
Extensions
Terms a(21) onward from Max Alekseyev, Nov 07 2024
A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 8, 11, 12, 11, 8, 4, 1, 1, 4, 8, 11, 12, 12, 12, 12, 11, 8, 4, 1, 1, 4, 8, 12, 16, 19, 20, 20, 19, 16, 12, 8, 4, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1
Offset: 0
Examples
Triangle begins: 1 1 1 1 1 2 1 1 2 2 2 1 1 3 4 4 3 1 1 3 5 6 6 5 3 1 1 4 8 11 12 11 8 4 1 1 4 8 11 12 12 12 12 11 8 4 1 1 4 8 12 16 19 20 20 19 16 12 8 4 1 Row n = 6 counts the following divisors: 1 2 4 8 16 48 144 720 3 6 12 24 72 240 5 9 18 36 80 360 10 20 40 120 15 30 60 180 45 90 Row n = 7 counts the following divisors: 1 2 4 8 16 48 144 720 5040 3 6 12 24 72 240 1008 5 9 18 36 80 336 1680 7 10 20 40 112 360 2520 14 28 56 120 504 15 30 60 168 560 21 42 84 180 840 35 45 90 252 1260 63 126 280 70 140 420 105 210 630 315
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]
A336616 Maximum divisor of n! with distinct prime multiplicities.
1, 1, 2, 3, 24, 40, 720, 1008, 8064, 72576, 3628800, 5702400, 68428800, 80870400, 317011968, 118879488000, 1902071808000, 2487324672000, 44771844096000, 50039119872000, 1000782397440000, 21016430346240000, 5085976143790080000, 6156707963535360000
Offset: 0
Keywords
Comments
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.
Examples
The sequence of terms together with their prime signatures begins: 1: () 1: () 2: (1) 3: (1) 24: (3,1) 40: (3,1) 720: (4,2,1) 1008: (4,2,1) 8064: (7,2,1) 72576: (7,4,1) 3628800: (8,4,2,1) 5702400: (8,4,2,1) 68428800: (10,5,2,1) 80870400: (10,5,2,1) 317011968: (11,5,2,1) 118879488000: (11,6,3,2,1)
Links
- David A. Corneth, Table of n, a(n) for n = 0..589
- Gus Wiseman, Sequences counting and encoding certain classes of multisets
Crossrefs
A336414 counts these divisors.
A336617 is the quotient n!/a(n).
A336618 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327526 gives the maximum divisor of n with equal prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
Programs
-
Mathematica
Table[Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]
-
PARI
a(n) = { if(n < 2, return(1)); my(pr = primes(primepi(n)), res = pr[#pr]); for(i = 1, #pr, pr[i] = [pr[i], val(n, pr[i])] ); forstep(i = #pr, 2, -1, if(pr[i][2] < pr[i-1][2], res*=pr[i-1][1]^pr[i-1][2] ) ); res } val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Aug 25 2020
Formula
a(n) = A327498(n!).
A336617 a(n) = n!/d where d = A336616(n) is the maximum divisor of n! with distinct prime multiplicities.
1, 1, 1, 2, 1, 3, 1, 5, 5, 5, 1, 7, 7, 77, 275, 11, 11, 143, 143, 2431, 2431, 2431, 221, 4199, 4199, 4199, 39083, 39083, 39083, 898909, 898909, 26068361, 26068361, 215441, 2141737, 2141737, 2141737, 66393847, 1009885357, 7953594143, 7953594143, 294282983291
Offset: 0
Keywords
Comments
A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.
Examples
The maximum divisor of 13! with distinct prime multiplicities is 80870400, so a(13) = 13!/80870400 = 77.
Links
- Jinyuan Wang, Table of n, a(n) for n = 0..1000
- Gus Wiseman, Sequences counting and encoding certain classes of multisets
Crossrefs
A336414 counts these divisors.
A336616 is the maximum divisor d.
A336619 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
Programs
-
Mathematica
Table[n!/Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]
Formula
a(n) = A327499(n!).
Extensions
More terms from Jinyuan Wang, Jul 31 2020
Comments
Examples
Links
Crossrefs
Programs
Haskell
Mathematica