cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 126 results. Next

A085604 T(n,k) = highest power of prime(k) dividing n!, read by rows.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 3, 1, 0, 0, 3, 1, 1, 0, 0, 4, 2, 1, 0, 0, 0, 4, 2, 1, 1, 0, 0, 0, 7, 2, 1, 1, 0, 0, 0, 0, 7, 4, 1, 1, 0, 0, 0, 0, 0, 8, 4, 2, 1, 0, 0, 0, 0, 0, 0, 8, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 11, 5, 2, 2, 1, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 07 2003

Keywords

Comments

T(n,1) = A011371(n); T(n,2) = A054861(n) for n>1;
T(n,k) = number of occurrences of prime(k) as factor in numbers <= n (with repetitions);
Sum{T(n,k): 1<=k<=n} = A022559(n);
T(n, A000720(n)) = 1; T(n,k) = 0, A000720(n)
T(n,k) = A115627(n,k) for n > 1 and k=1..A000720(n). - Reinhard Zumkeller, Nov 01 2013

Examples

			0;
1,0;
1,1,0;
3,1,0,0;
3,1,1,0,0;
4,2,1,0,0,0;
4,2,1,1,0,0,0;
7,2,1,1,0,0,0,0;
7,4,1,1,0,0,0,0,0;
8,4,2,1,0,0,0,0,0,0;
		

Crossrefs

Programs

  • Haskell
    a085604 n k = a085604_tabl !! (n-2) !! (k-1)
    a085604_row 1 = [0]
    a085604_row n = a115627_row n ++ (take $ a062298 $ fromIntegral n) [0,0..]
    a085604_tabl = map a085604_row [1..]
    -- Reinhard Zumkeller, Nov 01 2013
  • Mathematica
    T[n_, k_] := Module[{p = Prime[k], jm}, jm = Floor[Log[p, n]]; Sum[Quotient[n, p^j], {j, 1, jm}]];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 19 2021 *)

A325619 Heinz numbers of integer partitions whose reciprocal factorial sum is 1.

Original entry on oeis.org

2, 9, 375, 15625
Offset: 1

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      9: {2,2}
    375: {2,3,3,3}
  15625: {3,3,3,3,3,3}
		

Crossrefs

Reciprocal factorial sum: A002966, A051908, A316855, A325618, A325624.

Programs

  • Mathematica
    Select[Range[100000],Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]==1&]

Formula

Contains prime(n)^(n!) for all n > 0, including 191581231380566414401 for n = 4.

A325620 Number of integer partitions of n whose reciprocal factorial sum is an integer.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 14, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 28, 31, 33, 34, 36, 39, 41, 43, 45, 49, 52, 54, 57, 61, 65, 68, 71, 76, 80, 84, 88, 93, 98, 103, 107, 113
Offset: 1

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
  1: (1)
  2: (1,1)
  3: (1,1,1)
  4: (2,2)
  4: (1,1,1,1)
  5: (2,2,1)
  5: (1,1,1,1,1)
  6: (2,2,1,1)
  6: (1,1,1,1,1,1)
  7: (2,2,1,1,1)
  7: (1,1,1,1,1,1,1)
  8: (2,2,2,2)
  8: (2,2,1,1,1,1)
  8: (1,1,1,1,1,1,1,1)
  9: (2,2,2,2,1)
  9: (2,2,1,1,1,1,1)
  9: (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[Total[1/(#!)]]&]],{n,30}]

A325622 Number of integer partitions of n whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 2, 3, 3, 3, 5, 4, 4, 3, 3, 4, 6, 3, 4, 5, 5, 5, 6, 3, 7, 6, 5, 6, 6, 6, 5, 6, 8, 5, 7, 5, 4, 8, 7, 7, 7, 7, 9, 9, 9, 10, 12, 6, 12, 8, 10, 7, 14, 10, 8, 11, 11, 12, 11, 10, 10, 12, 14, 11, 10, 9, 10, 12, 10, 15, 14, 11, 10
Offset: 1

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   4: (2,2)
   5: (5)
   6: (6)
   6: (3,3)
   7: (7)
   8: (8)
   8: (4,4)
   9: (9)
   9: (5,4)
   9: (3,3,3)
  10: (10)
  10: (5,5)
  11: (11)
  11: (4,4,3)
  11: (3,3,3,2)
  12: (12)
  12: (6,6)
  12: (4,4,4)
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325623.

Programs

  • Maple
    f:= proc(n) nops(select(proc(t) local i; (1/add(1/i!,i=t))::integer end proc, combinat:-partition(n))) end proc:
    map(f, [$1..70]); # Robert Israel, May 09 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],IntegerQ[1/Total[1/(#!)]]&]],{n,30}]
  • PARI
    a(n) = my(c=0); forpart(v=n, if(numerator(sum(i=1, #v, 1/v[i]!))==1, c++)); c; \\ Jinyuan Wang, Feb 25 2025

Extensions

a(61)-a(70) from Robert Israel, May 09 2024
a(71)-a(80) from Jinyuan Wang, Feb 25 2025

A082288 n>1 appears bigomega(n) times, where bigomega(n)=A001222(n) is the number of prime factors of n (with repetition), a(1)=1.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 15, 16, 16, 16, 16, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 22, 22, 23, 24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 30, 30, 30, 31, 32, 32, 32, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36
Offset: 1

Author

Reinhard Zumkeller, Apr 07 2003

Keywords

Comments

A027746(n) divides a(n), a(n)=A027746(n) iff a(n) is prime; a(A022559(n)+1)=n.
A000040(A112798(n)) is a prime factor of a(n) for n>1. - Reinhard Zumkeller, Feb 03 2008

Crossrefs

Cf. A082287.

A325623 Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229
Offset: 1

Author

Gus Wiseman, May 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   37: {12}
   41: {13}
   43: {14}
   47: {15}
   49: {4,4}
   53: {16}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A336425 Number of ways to choose a divisor with distinct prime exponents of a divisor with distinct prime exponents of n!.

Original entry on oeis.org

1, 1, 3, 5, 24, 38, 132, 195, 570, 1588, 4193, 6086, 14561, 19232, 37142, 106479, 207291, 266871, 549726, 674330, 1465399, 3086598, 5939574, 7182133, 12324512, 28968994, 46819193, 82873443, 165205159, 196666406, 350397910, 406894074, 593725529, 1229814478, 1853300600, 4024414209, 6049714096, 6968090487, 9700557121, 16810076542, 26339337285
Offset: 0

Author

Gus Wiseman, Aug 06 2020

Keywords

Examples

			The a(4) = 24 divisors of divisors:
  1/1  2/1  3/1  4/1  8/1  12/1   24/1
       2/2  3/3  4/2  8/2  12/2   24/2
                 4/4  8/4  12/3   24/3
                      8/8  12/4   24/4
                           12/12  24/8
                                  24/12
                                  24/24
		

Crossrefs

A336422 is the non-factorial generalization.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327526 gives the maximum divisor of n with equal prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.
A336414 counts divisors of n! with distinct prime exponents.
A336415 counts divisors of n! with equal prime exponents.
A336423 counts chains in A130091, with maximal version A336569.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    Table[Total[Cases[Divisors[n!],d_?strsigQ:>Count[Divisors[d],e_?strsigQ]]],{n,0,20}]

Extensions

Terms a(21) onward from Max Alekseyev, Nov 07 2024

A336498 Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 8, 11, 12, 11, 8, 4, 1, 1, 4, 8, 11, 12, 12, 12, 12, 11, 8, 4, 1, 1, 4, 8, 12, 16, 19, 20, 20, 19, 16, 12, 8, 4, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1
Offset: 0

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

Row n is row n! of A146291. Row lengths are A022559(n) + 1.

Examples

			Triangle begins:
  1
  1
  1  1
  1  2  1
  1  2  2  2  1
  1  3  4  4  3  1
  1  3  5  6  6  5  3  1
  1  4  8 11 12 11  8  4  1
  1  4  8 11 12 12 12 12 11  8  4  1
  1  4  8 12 16 19 20 20 19 16 12  8  4  1
Row n = 6 counts the following divisors:
  1  2   4   8  16   48  144  720
     3   6  12  24   72  240
     5   9  18  36   80  360
        10  20  40  120
        15  30  60  180
            45  90
Row n = 7 counts the following divisors:
  1  2   4    8   16   48   144   720  5040
     3   6   12   24   72   240  1008
     5   9   18   36   80   336  1680
     7  10   20   40  112   360  2520
        14   28   56  120   504
        15   30   60  168   560
        21   42   84  180   840
        35   45   90  252  1260
             63  126  280
             70  140  420
            105  210  630
                 315
		

Crossrefs

A000720 is column k = 1.
A008302 is the version for superprimorials.
A022559 gives row lengths minus one.
A027423 gives row sums.
A146291 is the generalization to non-factorials.
A336499 is the restriction to divisors in A130091.
A000142 lists factorial numbers.
A336415 counts uniform divisors of n!.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]

A336616 Maximum divisor of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 2, 3, 24, 40, 720, 1008, 8064, 72576, 3628800, 5702400, 68428800, 80870400, 317011968, 118879488000, 1902071808000, 2487324672000, 44771844096000, 50039119872000, 1000782397440000, 21016430346240000, 5085976143790080000, 6156707963535360000
Offset: 0

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The sequence of terms together with their prime signatures begins:
             1: ()
             1: ()
             2: (1)
             3: (1)
            24: (3,1)
            40: (3,1)
           720: (4,2,1)
          1008: (4,2,1)
          8064: (7,2,1)
         72576: (7,4,1)
       3628800: (8,4,2,1)
       5702400: (8,4,2,1)
      68428800: (10,5,2,1)
      80870400: (10,5,2,1)
     317011968: (11,5,2,1)
  118879488000: (11,6,3,2,1)
		

Crossrefs

A327498 is the version not restricted to factorials, with quotient A327499.
A336414 counts these divisors.
A336617 is the quotient n!/a(n).
A336618 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327526 gives the maximum divisor of n with equal prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.

Programs

  • Mathematica
    Table[Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]
  • PARI
    a(n) = { if(n < 2, return(1)); my(pr = primes(primepi(n)), res = pr[#pr]); for(i = 1, #pr, pr[i] = [pr[i], val(n, pr[i])] ); forstep(i = #pr, 2, -1, if(pr[i][2] < pr[i-1][2], res*=pr[i-1][1]^pr[i-1][2] ) ); res }
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Aug 25 2020

Formula

a(n) = A327498(n!).

A336617 a(n) = n!/d where d = A336616(n) is the maximum divisor of n! with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 5, 5, 1, 7, 7, 77, 275, 11, 11, 143, 143, 2431, 2431, 2431, 221, 4199, 4199, 4199, 39083, 39083, 39083, 898909, 898909, 26068361, 26068361, 215441, 2141737, 2141737, 2141737, 66393847, 1009885357, 7953594143, 7953594143, 294282983291
Offset: 0

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The maximum divisor of 13! with distinct prime multiplicities is 80870400, so a(13) = 13!/80870400 = 77.
		

Crossrefs

A327499 is the non-factorial generalization, with quotient A327498.
A336414 counts these divisors.
A336616 is the maximum divisor d.
A336619 is the version for equal prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.

Programs

  • Mathematica
    Table[n!/Max@@Select[Divisors[n!],UnsameQ@@Last/@If[#==1,{},FactorInteger[#]]&],{n,0,15}]

Formula

a(n) = A327499(n!).

Extensions

More terms from Jinyuan Wang, Jul 31 2020
Previous Showing 51-60 of 126 results. Next