cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A075704 p and 12*p+1 are both primes.

Original entry on oeis.org

3, 5, 13, 19, 23, 29, 31, 59, 61, 71, 73, 83, 89, 101, 103, 139, 149, 191, 199, 223, 229, 233, 269, 271, 281, 293, 311, 379, 383, 401, 409, 433, 463, 479, 503, 523, 569, 601, 631, 643, 661, 691, 719, 751, 761, 773, 811, 829, 839, 863, 883, 929, 953, 1009, 1013
Offset: 0

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			5 is a prime and 12*5+1=61 is also a prime. 13 and 12*13+1=157 are both primes...
		

Crossrefs

Programs

  • Maple
    ts_m_sophie_germain_pras := proc(n); if (isprime(n)='true' and isprime(12*n+1)='true') then RETURN(n); fi; end: seq(ts_m_sophie_germain_pras(i), i=1..2030);
  • Mathematica
    Select[Prime[Range[300]],PrimeQ[12#+1]&] (* Harvey P. Dale, Feb 06 2012 *)

A087634 Primes p such that the equation phi(x) = 4p has a solution, where phi is the totient function.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 37, 41, 43, 53, 67, 73, 79, 83, 89, 97, 113, 127, 131, 139, 163, 173, 179, 191, 193, 199, 233, 239, 251, 277, 281, 293, 307, 359, 373, 409, 419, 431, 433, 443, 487, 491, 499, 509, 577, 593, 619, 641, 653, 659, 673, 683, 709, 719, 727
Offset: 1

Views

Author

T. D. Noe, Oct 24 2003

Keywords

Comments

Except for p=2, the complement of A043297. Note that for primes p < 1000, we need to check for solutions x < 18478. The equation phi(x) = 2p has solutions for Sophie Germain primes, A005384
a(n) is also the primes p with 2p+1 or 4p+1 also prime, sequences A005384 and A023212. For the case 2p+1 a trivial solution is phi(6p+3)=4p, and for 4p+1, phi(4p+1)=4p. - Enrique Pérez Herrero, Aug 16 2011

Crossrefs

Programs

  • Mathematica
    t=Table[EulerPhi[n], {n, 3, 20000}]; Union[Select[t, Mod[ #, 4]==0&&PrimeQ[ #/4]&& #/4<1000&]/4] (* or *)
    Select[Prime[Range[100]],PrimeQ[4#+1]||PrimeQ[2#+1]&] (* Enrique Pérez Herrero, Aug 16 2011 *)

A182434 Number of primes p < n such that 4*p+1 is also prime.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Enrique Pérez Herrero, Apr 28 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Boole[PrimeQ[n]&&PrimeQ[4n+1]],{n,1,200}]]
    Accumulate[If[AllTrue[{#,4#+1},PrimeQ],1,0]&/@Range[90]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 26 2015 *)

Formula

a(10^n) = A182265(n).
a(n) = sum(i=2..n, floor(phi(4*i^2+i)/(4*i^2-4*i))). - Enrique Pérez Herrero, May 02 2012.

A265765 Numerators of primes-only best approximates (POBAs) to 4; see Comments.

Original entry on oeis.org

11, 7, 13, 11, 19, 29, 43, 53, 67, 149, 163, 173, 211, 269, 283, 293, 317, 331, 389, 509, 523, 547, 557, 653, 691, 773, 787, 797, 907, 1051, 1109, 1123, 1171, 1229, 1493, 1531, 1637, 1723, 1733, 1867, 1949, 1997, 2011, 2083, 2251, 2309, 2347, 2371, 2467
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 4 start with  11/2, 7/2, 13/3, 11/3, 19/5, 29/7, 43/11, 53/13, 67/17. For example, if p and q are primes and q > 13, then 53/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 4; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265765/A120639 *)
    Numerator[tL]   (* A162857 *)
    Denominator[tL] (* A062737 *)
    Numerator[tU]   (* A090866 *)
    Denominator[tU] (* A023212 *)
    Numerator[y]    (* A265765 *)
    Denominator[y]  (* A120639 *)

A164569 Primes p such that 11*p+8 are prime numbers.

Original entry on oeis.org

3, 13, 31, 73, 79, 151, 163, 181, 193, 241, 283, 349, 373, 379, 409, 421, 463, 601, 631, 673, 751, 769, 811, 829, 853, 883, 991, 1021, 1039, 1063, 1171, 1201, 1303, 1381, 1423, 1429, 1453, 1459, 1471, 1543, 1549, 1579, 1609, 1621, 1663, 1669, 1789, 1801
Offset: 1

Views

Author

Keywords

Comments

Apart from the first term, a(n) = 1 (mod 6).

Examples

			11*3+8=41, ..
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[11*p+8],AppendTo[lst,p]],{n,6!}];lst
    Select[Prime[Range[500]],PrimeQ[11#+8]&] (* Harvey P. Dale, Jul 17 2011 *)

Extensions

Comment from Charles R Greathouse IV, Oct 12 2009

A164570 Primes p such that 8*p-3 and 8*p+3 are also prime numbers.

Original entry on oeis.org

2, 5, 7, 13, 47, 103, 107, 127, 163, 233, 293, 337, 383, 433, 443, 467, 503, 673, 677, 733, 797, 877, 1087, 1093, 1153, 1217, 1223, 1307, 1637, 1933, 2053, 2087, 2137, 2423, 2477, 2543, 2633, 2687, 2857, 2917, 3163, 3373, 3407, 3467, 3767, 3793, 3877
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A023229. [R. J. Mathar, Aug 26 2009]
Primes of the form A087695(k)/8. [R. J. Mathar, Aug 26 2009]

Examples

			For p=2, 8*2-3=13 and 8*2+3=19 are prime numbers, which adds p=2 to the sequence
For p=5, 8*5-3=37 and 8*5+3=43 are prime numbers, which adds p=5 to the sequence.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | IsPrime(8*p-3) and IsPrime(8*p+3)]; // Vincenzo Librandi, Apr 09 2013
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[8*p-3]&&PrimeQ[8*p+3],AppendTo[lst,p]], {n,7!}];lst
    Select[Prime[Range[1000]], And@@PrimeQ/@{8 # + 3, 8 # - 3}&] (* Vincenzo Librandi, Apr 09 2013 *)
    Select[Prime[Range[1000]],AllTrue[8#+{3,-3},PrimeQ]&] (* Harvey P. Dale, May 05 2023 *)

Extensions

Comments turned into examples by R. J. Mathar, Aug 26 2009

A186721 Numbers n such that n, 4n + 1 and 6n + 1 are all prime.

Original entry on oeis.org

3, 7, 13, 37, 73, 277, 373, 577, 727, 853, 1033, 1063, 1327, 1423, 1453, 1567, 1777, 1987, 2293, 2677, 2767, 3037, 3163, 3307, 3457, 4273, 4447, 4993, 5197, 5557, 6247, 6673, 7573, 8353, 8893, 9067, 9397, 9463, 9547, 9613, 10303, 10903, 12007, 12973, 13177, 14083
Offset: 1

Views

Author

Zak Seidov, Jan 21 2012

Keywords

Comments

Subsequence of A023212.

Crossrefs

Cf. A023212.

Programs

  • Mathematica
    Join[{3},Select[Range[7, 20000, 6], PrimeQ[#] && PrimeQ[4# + 1] && PrimeQ[6# + 1] &]]

A228857 Odd primes p > 3 for which 14*p+1 is also prime.

Original entry on oeis.org

5, 17, 47, 53, 59, 83, 107, 113, 149, 167, 173, 239, 269, 353, 419, 443, 449, 503, 509, 563, 587, 599, 647, 659, 677, 719, 797, 827, 929, 947, 977, 983, 1097, 1103, 1109, 1187, 1193, 1223, 1229, 1259, 1289, 1367, 1409, 1427, 1433, 1439, 1493, 1523, 1667
Offset: 1

Views

Author

Ant King, Sep 06 2013

Keywords

Comments

In 1823, Legendre proved that the first case of Fermat’s Last Theorem is true for all exponents that are members of this sequence (see Ribenboim’s reference, p.112).

Examples

			As both 5 and 14*5 + 1 = 71 are prime, then 5 is a member of this sequence.
		

References

  • Paulo Ribenboim; Fermat’s Last Theorem For Amateurs, Springer-Verlag, New York, Inc., (1999).

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(5,2000) |IsPrime(14*p+1)]; // Vincenzo Librandi, Sep 18 2016
    
  • Mathematica
    Select[Prime[Range[3,1667]],PrimeQ[14#+1] &]
  • PARI
    lista(nn) = forprime(p=5, nn, if(isprime(14*p+1), print1(p, ", "))); \\ Altug Alkan, Sep 18 2016

A297306 Primes p such that q = 4*p+1 and r = (2*p+1)/3 are also primes.

Original entry on oeis.org

7, 43, 79, 163, 673, 853, 919, 1063, 1429, 1549, 1663, 2143, 2683, 3229, 3499, 4993, 5119, 5653, 5779, 6229, 6343, 7333, 7459, 7669, 8353, 8539, 8719, 9829, 10009, 10243, 10303, 11383, 11689, 12583, 13399, 14149, 14653, 14923, 15649, 16603, 17053, 17389, 17749
Offset: 1

Views

Author

David S. Newman, Jan 04 2018

Keywords

Comments

This sequence was suggested by Moshe Shmuel Newman. It has its source in his study of finite groups.

Examples

			Prime p = 7 is in the sequence because q = 4*7+1 = 29 and r = (2*7+1)/3 = 5 are also primes.
		

Crossrefs

Cf. A000040.
Intersection of A023212 and A104163.

Programs

  • Maple
    a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p); if irem(p, 3)=1 and
             isprime(4*p+1) and isprime((2*p+1)/3) then break fi
          od; p
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jan 07 2018
  • Mathematica
    a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[Mod[p, 3] == 1 && PrimeQ[4p+1] && PrimeQ[(2p+1)/3], Break[]]]; p];
    Array[a, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    isok(p) = isprime(p) && isprime(4*p+1) && iferr(isprime((2*p+1)/3), E, 0); \\ Michel Marcus, Nov 27 2020

Extensions

More terms from Alois P. Heinz, Jan 07 2018

A318251 Lesser of amicable numbers pair (m, n) such that n = H(m) and m = H(n) where H(n) = A074206(n) is the number of ordered factorizations of n.

Original entry on oeis.org

6144, 19329024, 939524096, 4026531840, 309237645312, 6146186280960, 52158082842624, 29273397577908224
Offset: 1

Views

Author

Amiram Eldar, Aug 22 2018

Keywords

Comments

The larger numbers in each pair are in A318252.
Analogous to A002025 as A163272 is analogous to A000396.
If p and 4p+1 are primes then 2^(4p-1)*p is in this sequence, therefore if A023212 is infinite then also this sequence is.
The terms were calculated using an extended list of terms of A025487.

Examples

			6144 is in the sequence since A074206(6144) = 13312 and A074206(13312) = 6144.
		

Crossrefs

Programs

  • PARI
    f(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, f(A[k])));
    isok(n)={my(a=f(n)); a>n && f(a)==n;} \\ Michel Marcus, Sep 26 2018
Previous Showing 11-20 of 21 results. Next