cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A067418 Triangle A067330 with rows read backwards.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 10, 7, 5, 3, 20, 15, 12, 8, 5, 38, 30, 25, 19, 13, 8, 71, 58, 50, 40, 31, 21, 13, 130, 109, 96, 80, 65, 50, 34, 21, 235, 201, 180, 154, 130, 105, 81, 55, 34, 420, 365, 331, 289, 250, 210, 170, 131, 89, 55, 744, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1308, 1164, 1075, 965
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The column m (without leading 0's) gives the convolution of Fibonacci numbers F(n+1) := A000045(n+1), n>=0, with those with m-shifted index: a(n+m,m)=sum(F(k+1)*F(m+n+1-k),k=0..n), n>=0, m=0,1,...
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(z)*(A(z)-x*A(x*z))/(1-x), with A(x) := 1/(1-x-x^2) (g.f. for Fibonacci F(n+1), n>=0).
The columns give A001629(n+2), A023610, A067331-4, A067430-1, A067977-8 for m= 0..9, respectively. Row sums give A067988.

Examples

			{1}; {2,1}; {5,3,2}; {10,7,5,3}; ...; p(2,n)=5+3*x+2*x^2.
		

Programs

  • Mathematica
    Reverse /@ Table[Sum[Fibonacci[k + 1] Fibonacci[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)

Formula

a(n, m)=A067330(n, n-m), n>=m>=0, else 0.
a(n, m)= (((3*(n-m)+5)*F(n-m+1)+(n-m+1)*F(n-m))*F(m+1)+((n-m)*F(n-m+1)+2*(n-m+1)*F(n-m))*F(m))/5.
G.f. for column m=0, 1, ...: (x^m)*(F(m+1)+F(m)*x)/(1-x-x^2)^2, with F(m) := A000045(m) (Fibonacci).
a(n, m) = ((-1)^m*F(n-2*m+1)-m*L(n+2)+n*L(n+2)+5*F(n)+4*F(n-1))/5, with F(-n) = (-1)^(n+1)*F(n), hence a(n, m) = (2*(n-m+1)*L(n+2)-A067990(n, m))/5, n>=m>=0. - Ehren Metcalfe, Apr 11 2016

A091533 Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 21, 15, 5, 8, 30, 53, 53, 30, 8, 13, 58, 124, 157, 124, 58, 13, 21, 109, 273, 417, 417, 273, 109, 21, 34, 201, 577, 1029, 1239, 1029, 577, 201, 34, 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55, 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89
Offset: 0

Views

Author

Christian G. Bower, Jan 19 2004

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (k,n-k) using steps (1,0),(2,0),(0,1),(0,2),(1,1). - Seiichi Manyama, Apr 26 2025.

Examples

			This triangle begins:
   1;
   1,   1;
   2,   3,    2;
   3,   7,    7,    3;
   5,  15,   21,   15,    5;
   8,  30,   53,   53,   30,     8;
  13,  58,  124,  157,  124,    58,   13;
  21, 109,  273,  417,  417,   273,  109,   21;
  34, 201,  577, 1029, 1239,  1029,  577,  201,   34;
  55, 365, 1181, 2405, 3375,  3375, 2405, 1181,  365,  55;
  89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89;
  ...
		

Crossrefs

Row sums: A015518(n+1). Columns 0-1: A000045(n+1), A023610(n-1).
Cf. A090174, A212338 (column 2), A192364 (central terms).
Cf. A036355.

Programs

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) + T(n-2, k-2) for n >= 2, k >= 0, with initial conditions specified by first two rows.
G.f.: A(x, y) = 1/(1-x-x*y-x^2-x^2*y-x^2*y^2).
Sum_{k = 0..n} T(n,k)*x^k = A000045(n+1), A015518(n+1), A015524(n+1), A200069(n+1) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 30 2013
Sum_{k = 0..floor(n/2)} T(n-k,k) = (-1)^n*A079926(n). - Philippe Deléham, Oct 30 2013

A074083 Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 14, 39, 97, 224, 494, 1051, 2177, 4412, 8784, 17228, 33360, 63886, 121164, 227833, 425147, 787916, 1451198, 2657821, 4842727, 8782230, 15857426, 28517864, 51095760, 91232520, 162372682, 288115147, 509790277, 899630376
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^3 are 0,0,0,0,0,4.
		

Crossrefs

Coefficients of q^0, q^1 and q^2 are in A000045, A023610 and A074082. Related sequences with different values of b and lambda are in A074084-A074089.

Programs

  • Mathematica
    b=1; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0, 0}, LinearRecurrence[{4, -2, -8, 5, 8, -2, -4, -1}, {0, 0, 4, 14, 39, 97, 224, 494}, 31]] (* Jean-François Alcover, Jan 27 2019 *)

Formula

G.f.: (4x^5-2x^6-9x^7+x^8+6x^9+2x^10)/(1-x-x^2)^4.
a(n) = 4a(n-1)-2a(n-2)-8a(n-3)+5a(n-4)+8a(n-5)-2a(n-6)-4a(n-7)-a(n-8) for n>=11.

Extensions

Edited by Dean Hickerson, Aug 21 2002

A134400 M * A007318, where M = triangle with (1, 1, 2, 3, ...) in the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 4, 16, 24, 16, 4, 5, 25, 50, 50, 25, 5, 6, 36, 90, 120, 90, 36, 6, 7, 49, 147, 245, 245, 147, 49, 7, 8, 64, 224, 448, 560, 448, 224, 64, 8, 9, 81, 324, 756, 1134, 1134, 756, 324, 81, 9, 10, 100, 450, 1200, 2100, 2520, 2100, 1200, 450, 100, 10
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Row sums = A134401: (1, 2, 8, 24, 64, 160, 384, ...).
Triangle T(n,k), read by rows, given by [1,1,-1,1,0,0,0,0,0,...] DELTA [1,1,-1,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. A134402*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 26 2007
For n > 0, from n athletes, select a team of k players and then choose a coach who is allowed to be on the team or not. - Geoffrey Critzer, Mar 13 2010
Row sums are A036289 if first term changed to zero. Diagonal sums are A023610, starting with the 2nd diagonal. Partial sums of diagonals are A002940 if first term changed to zero. - John Molokach, Jul 06 2013
For n > 0, T(n,k) is the number of states in Sokoban puzzle with n non-obstacles cells and k boxes (see Russell and Norvig at page 157). - Stefano Spezia, Dec 03 2023

Examples

			First few rows of the triangle:
  1;
  1,  1;
  2,  4,   2;
  3,  9,   9,   3;
  4, 16,  24,  16,   4;
  5, 25,  50,  50,  25,   5;
  6, 36,  90, 120,  90,  36,  6;
  7, 49, 147, 245, 245, 147, 49, 7;
  ...
		

References

  • Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Hoboken: Pearson, 2021.

Crossrefs

T(2n,n) give A002011(n-1) for n>=1.

Programs

  • Maple
    with(combstruct): for n from 0 to 10 do seq(`if`(n=0, 1, n)* count( Combination(n), size=m), m=0..n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Join[{1},Table[Table[n*Binomial[n, k], {k,0, n}], {n, 10}]] //Flatten (* Geoffrey Critzer, Mar 13 2010 adapted by Stefano Spezia, Dec 03 2023 *)

Formula

From Geoffrey Critzer, Mar 13 2010: (Start)
T(0,0) = 1 and T(n,k) = n * binomial(n,k) for n > 0.
E.g.f. for column k is: (x^k/k!)*exp(x)*(x+k). (End)
T(n,k) = A003506(n,k) + A003506(n,k-1). - Geoffrey Critzer, Mar 13 2010
G.f.: (1-x-x*y+x^2+x^2*y+x^2*y^2)/(1-2*x-2*x*y+x^2+2*x^2*y+x^2*y^2). - Philippe Deléham, Nov 14 2013
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 14 2013
E.g.f.: 1 + exp(y*x)*exp(x)*(y*x + x). - Geoffrey Critzer, Mar 15 2015

Extensions

a(55)-a(65) from Stefano Spezia, Dec 03 2023

A207610 Triangle of coefficients of polynomials u(n,x) jointly generated with A207611; see the Formula section.

Original entry on oeis.org

1, 2, 4, 1, 7, 3, 1, 12, 7, 3, 1, 20, 15, 8, 3, 1, 33, 30, 19, 9, 3, 1, 54, 58, 42, 23, 10, 3, 1, 88, 109, 89, 55, 27, 11, 3, 1, 143, 201, 182, 125, 69, 31, 12, 3, 1, 232, 365, 363, 273, 166, 84, 35, 13, 3, 1, 376, 655, 709, 579, 383, 212, 100, 39, 14, 3, 1, 609
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Examples

			First five rows:
1
2
4...1
7...3...1
12...7...3...1
		

Crossrefs

Cf. A207611.
Cf. A000071 (column 1), A023610 (column 2).

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207610 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207611 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+x*v(n-1,x)+1, where u(1,x)=1, v(1,x)=1.

A207612 Triangle of coefficients of polynomials u(n,x) jointly generated with A207613; see the Formula section.

Original entry on oeis.org

1, 2, 4, 2, 7, 6, 4, 12, 14, 12, 8, 20, 30, 32, 24, 16, 33, 60, 76, 72, 48, 32, 54, 116, 168, 184, 160, 96, 64, 88, 218, 356, 440, 432, 352, 192, 128, 143, 402, 728, 1000, 1104, 992, 768, 384, 256, 232, 730, 1452, 2184, 2656, 2688, 2240, 1664, 768, 512
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

Column 1: A000071
Column 2: 2*A023610

Examples

			First five rows:
1
2
4....2
7....6....4
12...14...12...8
		

Crossrefs

Cf. A207613.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A207612 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A207613 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017

Formula

u(n,x)=u(n-1,x)+v(n-1,x), v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A213777 Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 3, 2, 7, 5, 3, 15, 12, 8, 5, 30, 25, 19, 13, 8, 58, 50, 40, 31, 21, 13, 109, 96, 80, 65, 50, 34, 21, 201, 180, 154, 130, 105, 81, 55, 34, 365, 331, 289, 250, 210, 170, 131, 89, 55, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1164, 1075, 965, 863
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2012

Keywords

Comments

Principal diagonal: A001870
Antidiagonal sums: A152881
row 1, (1,1,2,3,5,8,...)**(1,2,3,5,8,13,...): A023610(k-1)
row 2, (1,1,2,3,5,8,...)**(2,3,5,8,13,21,...): A067331(k-1)
row 3, (1,1,2,3,5,8,...)**(3,5,8,13,21,34,...)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....3....7....15....30....58
2....5....12...25....50....96
3....8....19...40....80....154
5....13...31...65....130...250
8....21...50...105...210...404
13...34...81...170...340...654
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213777 *)
    Table[t[n, n], {n, 1, 40}] (* A001870 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A152881 *)

Formula

T(n,k) = 2*T(n,k-1) + T(n,k-2) - 2*T(n,k-3) - T(n,k-4).
G.f. for row n: f(x)/g(x), where f(x) = F(n-1) + F(n-2)*x and g(x) = (1 - x - x^2)^2.
T(n,k) = (k*Lucas(n+k+1) + Lucas(n)*Fibonacci(k))/5. - Ehren Metcalfe, Jul 10 2019

A378707 Array read by ascending antidiagonals: A(n,k) is the total number of inner points of n-Fibonacci polyominoes with k columns, where k > 0.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 0, 5, 10, 7, 0, 7, 18, 26, 15, 0, 9, 26, 50, 63, 30, 0, 11, 34, 74, 124, 143, 58, 0, 13, 42, 98, 190, 296, 313, 109, 0, 15, 50, 122, 254, 457, 679, 668, 201, 0, 17, 58, 146, 318, 622, 1070, 1517, 1398, 365, 0, 19, 66, 170, 382, 782, 1461, 2439, 3325, 2883, 655
Offset: 2

Views

Author

Stefano Spezia, Dec 05 2024

Keywords

Examples

			The array begins as:
  0,  1,  3,   7,  15,  30,   58,  109,   201,   365, ...
  0,  3, 10,  26,  63, 143,  313,  668,  1398,  2883, ...
  0,  5, 18,  50, 124, 296,  679, 1517,  3325,  7184, ...
  0,  7, 26,  74, 190, 457, 1070, 2439,  5453, 12013, ...
  0,  9, 34,  98, 254, 622, 1461, 3361,  7583, 16857, ...
  0, 11, 42, 122, 318, 782, 1854, 4272,  9681, 21615, ...
  0, 13, 50, 146, 382, 942, 2238, 5182, 11754, 26302, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_]:=SeriesCoefficient[y((6-4n)y-(2-4n)y^2-(3-n)n y^n-2(2-n)^2y^(n+1)+(2-5n+n^2)y^(n+2)+2y^(2n+1))/(2(-1+y)(1-2y+y^(n+1))^2), {y, 0, k}]; Table[A[n-k+1, k], {n, 2, 12}, {k, n-1}]//Flatten

Formula

A(n, k) = [y^k] y*((6 - 4*n)*y - (2 - 4*n)*y^2 - (3 - n)*n*y^n -2*(2 - n)^2*y^(n+1) + (2 - 5*n + n^2)*y^(n+2) + 2*y^(2n+1))/(2*(-1 + y)*(1 - 2*y + y^(n+1))^2).
A(2, n) = A023610(n-2) for n > 1.

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A181630 Duplicate of A112310.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 5
Offset: 2

Views

Author

Gary W. Adamson, Nov 02 2010

Keywords

Comments

A181631 = number of leading 1's in Fibonacci Maximal notation.
This notation uses headings: (...5, 3, 2, 1); and fills in entries starting from the right, as opposed to the left. For example n=8 = 1011 = (5 + 2 + 1) as opposed to Minimal notation which would be (1100) = (5 + 3).
Conjectured row sums = A023610: (1, 3, 7, 15, 30, 58, ...).
Is this the same as A112310? - R. J. Mathar, Nov 03 2010
Contribution from Gary W. Adamson, Nov 03 2010: (Start)
The next row of 13 terms = (3, 4, 4, 5, 6, 4, 4, 5, 4, 5, 5, 5, 6), sum = 58. (End)

Examples

			First few terms of the triangle:
  1;
  1, 2;
  2, 2, 3;
  2, 3, 3, 3, 4;
  3, 3, 4, 3, 4, 4, 4, 5;
  ...
Example: 10 in Fibonacci Maximal = 1110, having three 1's, so a(10) = 3.
		

Crossrefs

Formula

Count numbers of 1's in Fibonacci Maximal notation for n.
Previous Showing 11-20 of 27 results. Next