A067418
Triangle A067330 with rows read backwards.
Original entry on oeis.org
1, 2, 1, 5, 3, 2, 10, 7, 5, 3, 20, 15, 12, 8, 5, 38, 30, 25, 19, 13, 8, 71, 58, 50, 40, 31, 21, 13, 130, 109, 96, 80, 65, 50, 34, 21, 235, 201, 180, 154, 130, 105, 81, 55, 34, 420, 365, 331, 289, 250, 210, 170, 131, 89, 55, 744, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1308, 1164, 1075, 965
Offset: 0
{1}; {2,1}; {5,3,2}; {10,7,5,3}; ...; p(2,n)=5+3*x+2*x^2.
-
Reverse /@ Table[Sum[Fibonacci[k + 1] Fibonacci[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)
A091533
Triangle read by rows, related to Pascal's triangle, starting with rows 1; 1,1.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 3, 7, 7, 3, 5, 15, 21, 15, 5, 8, 30, 53, 53, 30, 8, 13, 58, 124, 157, 124, 58, 13, 21, 109, 273, 417, 417, 273, 109, 21, 34, 201, 577, 1029, 1239, 1029, 577, 201, 34, 55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55, 89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89
Offset: 0
This triangle begins:
1;
1, 1;
2, 3, 2;
3, 7, 7, 3;
5, 15, 21, 15, 5;
8, 30, 53, 53, 30, 8;
13, 58, 124, 157, 124, 58, 13;
21, 109, 273, 417, 417, 273, 109, 21;
34, 201, 577, 1029, 1239, 1029, 577, 201, 34;
55, 365, 1181, 2405, 3375, 3375, 2405, 1181, 365, 55;
89, 655, 2358, 5393, 8625, 10047, 8625, 5393, 2358, 655, 89;
...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n<1, 1, add(add(T(n-i, k-j), j=0..i), i=1..2)))
end:
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 14 2022
-
A091533[-2, n2_] = 0; A091533[n1_, -2] = 0; A091533[-1, n2_] = 0; A091533[n1_, -1] = 0; A091533[0, 0] = 1; A091533[n1_, n2_] := A091533[n1, n2] = A091533[n1 - 1, n2] + A091533[n1, n2 - 1] + A091533[n1 - 1, n2 - 1] + A091533[n1 - 2, n2] + A091533[n1, n2 - 2]; Table[A091533[x - y, y], {x, 0, 9}, {y, 0, x}] // Flatten (* Robert P. P. McKone, Jan 14 2022 *)
A074083
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).
Original entry on oeis.org
0, 0, 0, 0, 0, 4, 14, 39, 97, 224, 494, 1051, 2177, 4412, 8784, 17228, 33360, 63886, 121164, 227833, 425147, 787916, 1451198, 2657821, 4842727, 8782230, 15857426, 28517864, 51095760, 91232520, 162372682, 288115147, 509790277, 899630376
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^3 are 0,0,0,0,0,4.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (4, -2, -8, 5, 8, -2, -4, -1).
-
b=1; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0, 0, 0}, LinearRecurrence[{4, -2, -8, 5, 8, -2, -4, -1}, {0, 0, 4, 14, 39, 97, 224, 494}, 31]] (* Jean-François Alcover, Jan 27 2019 *)
A134400
M * A007318, where M = triangle with (1, 1, 2, 3, ...) in the main diagonal and the rest zeros.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 4, 16, 24, 16, 4, 5, 25, 50, 50, 25, 5, 6, 36, 90, 120, 90, 36, 6, 7, 49, 147, 245, 245, 147, 49, 7, 8, 64, 224, 448, 560, 448, 224, 64, 8, 9, 81, 324, 756, 1134, 1134, 756, 324, 81, 9, 10, 100, 450, 1200, 2100, 2520, 2100, 1200, 450, 100, 10
Offset: 0
First few rows of the triangle:
1;
1, 1;
2, 4, 2;
3, 9, 9, 3;
4, 16, 24, 16, 4;
5, 25, 50, 50, 25, 5;
6, 36, 90, 120, 90, 36, 6;
7, 49, 147, 245, 245, 147, 49, 7;
...
- Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Hoboken: Pearson, 2021.
T(2n,n) give
A002011(n-1) for n>=1.
-
with(combstruct): for n from 0 to 10 do seq(`if`(n=0, 1, n)* count( Combination(n), size=m), m=0..n) od; # Zerinvary Lajos, Apr 09 2008
-
Join[{1},Table[Table[n*Binomial[n, k], {k,0, n}], {n, 10}]] //Flatten (* Geoffrey Critzer, Mar 13 2010 adapted by Stefano Spezia, Dec 03 2023 *)
A207610
Triangle of coefficients of polynomials u(n,x) jointly generated with A207611; see the Formula section.
Original entry on oeis.org
1, 2, 4, 1, 7, 3, 1, 12, 7, 3, 1, 20, 15, 8, 3, 1, 33, 30, 19, 9, 3, 1, 54, 58, 42, 23, 10, 3, 1, 88, 109, 89, 55, 27, 11, 3, 1, 143, 201, 182, 125, 69, 31, 12, 3, 1, 232, 365, 363, 273, 166, 84, 35, 13, 3, 1, 376, 655, 709, 579, 383, 212, 100, 39, 14, 3, 1, 609
Offset: 1
First five rows:
1
2
4...1
7...3...1
12...7...3...1
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207610 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207611 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
A207612
Triangle of coefficients of polynomials u(n,x) jointly generated with A207613; see the Formula section.
Original entry on oeis.org
1, 2, 4, 2, 7, 6, 4, 12, 14, 12, 8, 20, 30, 32, 24, 16, 33, 60, 76, 72, 48, 32, 54, 116, 168, 184, 160, 96, 64, 88, 218, 356, 440, 432, 352, 192, 128, 143, 402, 728, 1000, 1104, 992, 768, 384, 256, 232, 730, 1452, 2184, 2656, 2688, 2240, 1664, 768, 512
Offset: 1
First five rows:
1
2
4....2
7....6....4
12...14...12...8
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x]
v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207612 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207613 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + 2*x*v(n - 1, x) + 1
def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
A213777
Rectangular array: (row n) = b**c, where b(h) = F(h), c(h) = F(h+1), F=A000045 (Fibonacci numbers), n>=1, h>=1, and ** = convolution.
Original entry on oeis.org
1, 3, 2, 7, 5, 3, 15, 12, 8, 5, 30, 25, 19, 13, 8, 58, 50, 40, 31, 21, 13, 109, 96, 80, 65, 50, 34, 21, 201, 180, 154, 130, 105, 81, 55, 34, 365, 331, 289, 250, 210, 170, 131, 89, 55, 655, 600, 532, 469, 404, 340, 275, 212, 144, 89, 1164, 1075, 965, 863
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1....3....7....15....30....58
2....5....12...25....50....96
3....8....19...40....80....154
5....13...31...65....130...250
8....21...50...105...210...404
13...34...81...170...340...654
-
b[n_] := Fibonacci[n]; c[n_] := Fibonacci[n + 1];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213777 *)
Table[t[n, n], {n, 1, 40}] (* A001870 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
Table[s[n], {n, 1, 50}] (* A152881 *)
A378707
Array read by ascending antidiagonals: A(n,k) is the total number of inner points of n-Fibonacci polyominoes with k columns, where k > 0.
Original entry on oeis.org
0, 0, 1, 0, 3, 3, 0, 5, 10, 7, 0, 7, 18, 26, 15, 0, 9, 26, 50, 63, 30, 0, 11, 34, 74, 124, 143, 58, 0, 13, 42, 98, 190, 296, 313, 109, 0, 15, 50, 122, 254, 457, 679, 668, 201, 0, 17, 58, 146, 318, 622, 1070, 1517, 1398, 365, 0, 19, 66, 170, 382, 782, 1461, 2439, 3325, 2883, 655
Offset: 2
The array begins as:
0, 1, 3, 7, 15, 30, 58, 109, 201, 365, ...
0, 3, 10, 26, 63, 143, 313, 668, 1398, 2883, ...
0, 5, 18, 50, 124, 296, 679, 1517, 3325, 7184, ...
0, 7, 26, 74, 190, 457, 1070, 2439, 5453, 12013, ...
0, 9, 34, 98, 254, 622, 1461, 3361, 7583, 16857, ...
0, 11, 42, 122, 318, 782, 1854, 4272, 9681, 21615, ...
0, 13, 50, 146, 382, 942, 2238, 5182, 11754, 26302, ...
...
-
A[n_, k_]:=SeriesCoefficient[y((6-4n)y-(2-4n)y^2-(3-n)n y^n-2(2-n)^2y^(n+1)+(2-5n+n^2)y^(n+2)+2y^(2n+1))/(2(-1+y)(1-2y+y^(n+1))^2), {y, 0, k}]; Table[A[n-k+1, k], {n, 2, 12}, {k, n-1}]//Flatten
A129710
Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0
T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
1;
2;
2, 1;
2, 3;
2, 5, 1;
2, 7, 4;
2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
1;
2, 0;
2, 1, 0;
2, 3, 0, 0;
2, 5, 1, 0, 0;
2, 7, 4, 0, 0, 0;
2, 9, 9, 1, 0, 0, 0;
Columns:
A040000,
A005408,
A000290,
A000330,
A002415,
A005585,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
-
T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
-
MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 5
Offset: 2
First few terms of the triangle:
1;
1, 2;
2, 2, 3;
2, 3, 3, 3, 4;
3, 3, 4, 3, 4, 4, 4, 5;
...
Example: 10 in Fibonacci Maximal = 1110, having three 1's, so a(10) = 3.
Comments