A308676 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(d^k * n/d).
1, 1, 3, 1, 5, 4, 1, 17, 28, 9, 1, 257, 19684, 273, 6, 1, 65537, 7625597484988, 4294967553, 3126, 24, 1, 4294967297, 443426488243037769948249630619149892804, 340282366920938463463374607431768276993, 298023223876953126, 47450, 8
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, ... 3, 5, 17, 257, ... 4, 28, 19684, 7625597484988, ... 9, 273, 4294967553, 340282366920938463463374607431768276993, ...
Links
- Seiichi Manyama, Antidiagonals n = 1..9, flattened
Programs
-
Mathematica
T[n_, k_] := DivisorSum[n, #^(n * #^(k-1)) &]; Table[T[k, n - k], {n, 1, 7}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)
Formula
L.g.f. of column k: -log(Product_{j>=1} (1 - j^(j^k) * x^j)^(1/j)).
Comments