cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A157255 a(n) = sigma_(n^n)(n).

Original entry on oeis.org

1, 17, 7625597484988
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[n^n,n],{n,1,5}]
  • PARI
    a(n) = sigma(n, n^n); \\ Amiram Eldar, Mar 01 2024

A226890 E.g.f.: exp( Sum_{n>=1} sigma(n,n) * x^(n^2) / n^n ).

Original entry on oeis.org

1, 1, 1, 1, 31, 151, 451, 1051, 33601, 663601, 5187001, 25905001, 254322751, 10408719751, 128046088171, 920598820051, 29249420054401, 723848667813601, 12441294278905201, 138598703861148241, 4406639731521827551, 93453608310743628151, 1932981245635597160851, 27744052310106087405451
Offset: 0

Views

Author

Paul D. Hanna, Jun 20 2013

Keywords

Comments

Here sigma(n,n) = A023887(n), the sum of the n-th powers of the divisors of n.
Compare to: exp( Sum_{n>=1} sigma(n)*x^n/n ), the g.f. of the partitions.

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + x^3/3! + 31*x^4/4! + 151*x^5/5! + 451*x^6/6! +...
where
log(A(x)) = x + 5*x^4/2^2 + 28*x^9/3^3 + 273*x^16/4^4 + 3126*x^25/5^5 + 47450*x^36/6^6 + 823544*x^49/7^7 +...+ A023887(n)*x^(n^2)/n^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(exp(sum(m=1,n,sigma(m,m)*(x^m/m)^m)+x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) == 1 (mod 30) (conjecture - valid up to n=4000; if true for n>=0, why?).

A308763 a(n) = Sum_{d|n} d^(n-2).

Original entry on oeis.org

1, 2, 4, 21, 126, 1394, 16808, 266305, 4785157, 100390882, 2357947692, 61978939050, 1792160394038, 56707753666594, 1946196290656824, 72061992352890881, 2862423051509815794, 121441386937936123331, 5480386857784802185940, 262145000003883417004506
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(n - 2) &]; Array[a, 20] (* Amiram Eldar, May 08 2021 *)
  • PARI
    {a(n) = sigma(n, n-2)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k*x)^k)^(1/k^3)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(k-2)*x^k/(1-(k*x)^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k*x)^k)^(1/k^3)) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(k-2) * x^k/(1 - (k*x)^k).

A319278 Square array sigma_k(n) read down antidiagonals: sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 4, 1, 9, 10, 7, 1, 17, 28, 21, 6, 1, 33, 82, 73, 26, 12, 1, 65, 244, 273, 126, 50, 8, 1, 129, 730, 1057, 626, 252, 50, 15, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12
Offset: 1

Views

Author

R. J. Mathar, Sep 16 2018

Keywords

Comments

Equals the square array A082771 without its first column.

Examples

			The array starts in row n=1 with columns k>=1 as:
     1      1      1      1      1      1       1        1
     3      5      9     17     33     65     129      257
     4     10     28     82    244    730    2188     6562
     7     21     73    273   1057   4161   16513    65793
     6     26    126    626   3126  15626   78126   390626
    12     50    252   1394   8052  47450  282252  1686434
     8     50    344   2402  16808 117650  823544  5764802
    15     85    585   4369  33825 266305 2113665 16843009
		

Crossrefs

Cf. A082771, A023887 (diagonal), A109974, A319194 (partial column sums).

Programs

  • Mathematica
    T[n_, k_] := DivisorSigma[k, n];
    Table[T[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 16 2021 *)

Formula

sigma_k(n) = sum_{d|n} d^k.

A321190 a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k/(1 - x^k)).

Original entry on oeis.org

1, 1, 6, 47, 778, 25476, 1752936, 242632397, 70015221566, 41446777283255, 49999934258165654, 125272856707074638221, 641938223803783115191706, 6731818441446626626586172740, 146378489075644780343627471981694, 6505906463580477520696075719916583118
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series((1-add(k^n*x^k/(1-x^k),k=1..n))^(-1),x,n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 29 2018
  • Mathematica
    Table[SeriesCoefficient[1/(1 - Sum[k^n x^k/(1 - x^k), {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - Sum[DivisorSigma[n, k] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}]
    Table[SeriesCoefficient[1/(1 - Sum[Sum[j^n x^(i j), {j, 1, n}], {i, 1, n}]), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = [x^n] 1/(1 - Sum_{k>=1} sigma_n(k)*x^k).
a(n) = [x^n] 1/(1 - Sum_{i>=1, j>=1} j^n*x^(i*j)).
a(n) = [x^n] 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^(k^(n-1)))).

A321295 a(n) = n * sigma_n(n).

Original entry on oeis.org

1, 10, 84, 1092, 15630, 284700, 5764808, 134744072, 3486961557, 100097666500, 3138428376732, 107019534520152, 3937376385699302, 155577590681061500, 6568408813691796120, 295152408847700721680, 14063084452067724991026, 708238048886859220660710
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [n*DivisorSigma(n, n): n in [1..20]]; // Vincenzo Librandi, Nov 06 2018
  • Mathematica
    Table[n DivisorSigma[n, n], {n, 18}]
    nmax = 18; Rest[CoefficientList[Series[Sum[k^(k + 1) x^k/(1 - (k x)^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[EulerPhi[n/d] DivisorSigma[n + 1, d], {d, Divisors[n]}], {n, 18}]
  • PARI
    a(n) = n*sigma(n, n); \\ Michel Marcus, Nov 03 2018
    
  • Perl
    use ntheory ":all"; say "$ ",vecprod($,divisor_sum($,$)) for 1..30; # Dana Jacobsen, Nov 05 2018
    

Formula

G.f.: Sum_{k>=1} k^(k+1)*x^k/(1 - (k*x)^k)^2.
a(n) = Sum_{d|n} phi(n/d)*sigma_(n+1)(d).
a(n) = n * A023887(n).

A346773 a(n) = Sum_{d|n} möbius(d)^n.

Original entry on oeis.org

1, 2, 0, 2, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 2, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 2, 0, 8, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 8, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 8, 0
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[MoebiusMu[d]^n,{d,Divisors[n]}],{n,103}] (* Stefano Spezia, Aug 03 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^n);
    
  • PARI
    a(n) = if(n%2, 0^(n-1), 2^omega(2*n));
    
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N, (moebius(k)*x)^k/(1-(moebius(k)*x)^k)))

Formula

G.f.: Sum_{k>=1} (mu(k)*x)^k/(1 - (mu(k)*x)^k).
a(2*n-1) = 0^(n-1) and a(2*n) = A034444(2*n) = A100008(n) for n > 0.

A350503 Self-convolution of sigma_n(n).

Original entry on oeis.org

1, 10, 81, 826, 9766, 141448, 2371173, 46285454, 1025108476, 25583455958, 709014239914, 21645251877538, 721074846998772, 26036416881319860, 1012400617533469985, 42173042024213765280, 1873237518724869171647, 88367918629612594749582, 4411615292876287372479856
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 06 2022

Keywords

Crossrefs

Cf. A023887 (sigma_n(n)).

Programs

  • Mathematica
    Table[Sum[DivisorSigma[k, k]*DivisorSigma[n - k + 1, (n - k + 1)], {k, n}], {n, 20}]

Formula

a(n) = Sum_{k=1..n} A023887(k) * A023887(n-k+1).
a(n) ~ 2*n^n. - Vaclav Kotesovec, Aug 20 2025

A352420 Number of distinct prime factors of sigma_n(n).

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 3, 2, 3, 5, 6, 8, 5, 5, 8, 6, 3, 8, 5, 11, 9, 7, 8, 10, 8, 8, 10, 12, 7, 13, 7, 11, 15, 10, 15, 11, 7, 8, 11, 10, 6, 14, 8, 14, 14, 11, 10, 17, 6, 21, 15, 16, 8, 18, 16, 15, 16, 6, 9, 22, 8, 10, 17, 13, 17, 17, 7, 17, 20, 17, 8, 23, 4, 13, 21
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 21 2022

Keywords

Examples

			a(5) = 3; a(5) = omega(sigma_5(5)) = omega(1^5+5^5) = omega(3126) = 3.
		

Crossrefs

Cf. A001221 (omega), A023887 (sigma_n(n)).

Programs

  • Maple
    A342420 := proc(n)
        A001221(A023887(n)) ; # reuses other codes
    end proc:
    seq(A342420(n),n=1..20) ; # R. J. Mathar, Apr 06 2022
  • Mathematica
    Table[PrimeNu[DivisorSigma[n, n]], {n, 30}]
  • PARI
    a(n) = omega(sigma(n, n)); \\ Daniel Suteu, Mar 23 2022
    
  • Python
    from sympy import primefactors, factorint
    def A352420(n): return len(set().union(*(primefactors((p**((e+1)*n)-1)//(p**n-1)) for p, e in factorint(n).items()))) # Chai Wah Wu, Mar 24 2022

Formula

a(n) = omega(sigma_n(n)) = A001221(A023887(n)).

Extensions

a(67)-a(75) from Daniel Suteu, Mar 23 2022

A352839 Expansion of g.f. 1/(1 - Sum_{k>=1} sigma_k(k) * x^k).

Original entry on oeis.org

1, 1, 6, 39, 370, 4132, 59288, 990705, 19577018, 439550259, 11142216938, 313147651821, 9680830606850, 325944181383936, 11875777329091878, 465292113335910106, 19507503314546762246, 871248546067010133794, 41295079536653463057146
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-sum(k=1, N, sigma(k, k)*x^k)))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * a(n-k).
Previous Showing 41-50 of 58 results. Next