cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A377055 Position of first appearance of zero in the n-th differences of the prime-powers (A246655), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 1, 4, 48, 61, 83, 29, 57, 290, 121, 7115, 14207, 68320, 14652, 149979, 122704, 481540, 980376, 632441, 29973, 25343678, 50577935, 7512418, 210836403, 67253056, 224083553, 910629561, 931524323, 452509699, 2880227533, 396690327, 57954538325, 77572935454, 35395016473
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The fourth differences of A246655 begin: 1, -3, 3, 0, -2, 2, ... so a(4) = 4.
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
For squarefree numbers we have A377042, nonsquarefree A377050.
These are the positions of first zeros in each row of A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For leaders we have A377054, for primes A007442 or A030016.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A246655 lists the prime-powers, differences A057820 (except first term).

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],PrimePowerQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]], {k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(12)-a(27) from Pontus von Brömssen, Oct 22 2024
a(28)-a(30) from Chai Wah Wu, Oct 23 2024
a(31)-a(35) from Lucas A. Brown, Nov 03 2024

A072721 Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2002

Keywords

Comments

First differs from A322968 at a(12) = 10, A322968(12) = 9.

Examples

			a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)  (C)
            (22)       (33)        (44)    (333)  (55)          (66)
                       (42)        (422)          (82)          (84)
                       (222)       (2222)         (442)         (93)
                                                  (4222)        (444)
                                                  (22222)       (822)
                                                                (3333)
                                                                (4422)
                                                                (42222)
                                                                (222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
    
  • PARI
    seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025

Formula

a(n) = A072721(n)-A072721(n-1). a(p)=1 for p prime.
a(n) = A322900(n) - 1. - Gus Wiseman, Jan 01 2019
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A175082(k)^j)). - Andrew Howroyd, Jan 23 2025
For n >= 1, a(n) >= A379957(n). - Antti Karttunen, Jan 23 2025

A376654 Sorted positions of first appearances in the second differences of consecutive prime-powers exclusive (A246655).

Original entry on oeis.org

3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, 205, 206, 215, 243, 244, 303, 324, 326, 401, 465, 483, 604, 800, 879, 938, 1032, 1054, 1076, 1233, 1280, 1720, 1889, 1890, 1905, 1939, 1959, 1961, 2256, 2289, 2409, 2879, 3149
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers exclusive (A246655) are:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, ...
with first differences (A057820 except first term) :
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, ...
with first differences (A376596 except first term):
  0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, -4, ...
with first appearances (A376654):
  1, 3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, ...
		

Crossrefs

For first differences we have A376340.
These are the sorted positions of first appearances in A376596 except first term.
The inclusive version is a(n) + 1 = A376653(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[1000],PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A322900 Number of integer partitions of n whose parts are all proper powers of the same number.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 5, 2, 5, 3, 7, 2, 11, 2, 9, 5, 11, 2, 16, 2, 18, 6, 17, 2, 27, 3, 23, 6, 30, 2, 38, 2, 37, 8, 39, 5, 58, 2, 49, 10, 66, 2, 74, 2, 78, 14, 77, 2, 109, 3, 100, 12, 118, 2, 131, 6, 146, 15, 143, 2, 190, 2, 169, 20, 203, 6, 224, 2, 242, 18, 248
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

Such a partition contains either no 1's or only 1's.
A proper power of n is a number n^k for some positive integer k.
Also integer partitions whose parts all have the same radical base (A052410).

Examples

			The a(1) = 1 through a(14) = 9 integer partitions (A = 10, B = 11, C = 12, D = 13, E = 14):
  (1) (2)  (3)   (4)    (5)     (6)      (7)       (8)        (9)
      (11) (111) (22)   (11111) (33)     (1111111) (44)       (333)
                 (1111)         (42)               (422)      (111111111)
                                (222)              (2222)
                                (111111)           (11111111)
.
  (A)          (B)           (C)            (D)             (E)
  (55)         (11111111111) (66)           (1111111111111) (77)
  (82)                       (84)                           (842)
  (442)                      (93)                           (4442)
  (4222)                     (444)                          (8222)
  (22222)                    (822)                          (44222)
  (1111111111)               (3333)                         (422222)
                             (4422)                         (2222222)
                             (42222)                        (11111111111111)
                             (222222)
                             (111111111111)
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],SameQ@@radbase/@#&]],{n,30}]

A321378 Number of integer partitions of n containing no 1's or prime powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 3, 2, 3, 0, 6, 1, 5, 3, 6, 1, 11, 2, 9, 6, 12, 5, 19, 4, 17, 11, 23, 9, 32, 10, 31, 22, 39, 17, 55, 21, 57, 37, 67, 33, 92, 44, 97, 65, 114, 63, 154, 78, 162, 113, 191, 117, 250, 138, 269, 194, 320
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2018

Keywords

Examples

			The a(30) = 11 integer partitions:
  (30)
  (24,6)
  (15,15)
  (18,12)
  (20,10)
  (18,6,6)
  (12,12,6)
  (14,10,6)
  (10,10,10)
  (12,6,6,6)
  (6,6,6,6,6)
		

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[PrimePowerQ[n],1,1/(1-x^n)],{n,2,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

A354911 Number of factorizations of n into relatively prime prime-powers.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 5, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 2, 1, 1, 0, 6, 0, 1, 2, 2, 1, 1, 0, 5, 0, 1, 0, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Examples

			The a(n) factorizations for n = 6, 12, 24, 36, 48, 72, 96:
  2*3  3*4    3*8      4*9      3*16       8*9        3*32
       2*2*3  2*3*4    2*2*9    2*3*8      2*4*9      3*4*8
              2*2*2*3  3*3*4    3*4*4      3*3*8      2*3*16
                       2*2*3*3  2*2*3*4    2*2*2*9    2*2*3*8
                                2*2*2*2*3  2*3*3*4    2*3*4*4
                                           2*2*2*3*3  2*2*2*3*4
                                                      2*2*2*2*2*3
		

Crossrefs

This is the relatively prime case of A000688, partitions A023894.
Positions of 0's are A246655 (A000961 includes 1).
For strict instead of relatively prime we have A050361, partitions A054685.
Positions of 1's are A000469 (A120944 excludes 1).
For pairwise coprime instead of relatively prime we have A143731.
The version for partitions instead of factorizations is A356067.
A000005 counts divisors.
A001055 counts factorizations.
A001221 counts distinct prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A289509 lists numbers whose prime indices are relatively prime.
A295935 counts twice-factorizations with constant blocks (type PPR).
A355743 lists numbers with prime-power prime indices, squarefree A356065.

Programs

  • Mathematica
    ufacs[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[ufacs[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[Select[ufacs[Select[Divisors[n],PrimePowerQ[#]&],n],GCD@@#<=1&]],{n,100}]

Formula

a(n) = A000688(n) if n is nonprime, otherwise a(n) = 0.

A307727 Number of partitions of n into 3 prime powers (not including 1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 8, 7, 9, 9, 10, 10, 12, 11, 14, 13, 14, 13, 16, 13, 18, 15, 18, 16, 20, 18, 23, 20, 25, 23, 26, 22, 28, 23, 30, 23, 30, 23, 32, 26, 32, 27, 34, 28, 37, 28, 36, 29, 40, 31, 43, 28, 42, 32, 44, 32, 46, 32, 46, 35, 46, 35, 50, 34, 51, 37, 53, 36, 59, 36, 57, 41
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2019

Keywords

Examples

			a(11) = 4 because we have [7, 2, 2], [5, 4, 2], [5, 3, 3] and [4, 4, 3].
		

Crossrefs

Programs

  • Maple
    f:= proc(n,k,pmax) option remember;
      local t,p,j;
      if n = 0 then return `if`(k=0, 1, 0) fi;
      if k = 0 then return 0 fi;
      if n > k*pmax then return 0 fi;
      t:= 0:
      for p in A246655 do
        if p > pmax then return t fi;
        t:= t + add(procname(n-j*p, k-j, min(p-1,n-j*p)),j=1..min(k,floor(n/p)))
      od;
      t
    end proc:
    seq(f(n,3,n),n=0..80) # Robert Israel, Apr 25 2019
  • Mathematica
    Array[Count[IntegerPartitions[#, {3}], _?(AllTrue[#, PrimePowerQ] &)] &, 81, 0]

Formula

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^A246655(k)).
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} [omega(i) * omega(j) * omega(n-i-j) == 1], where omega(n) is the number of distinct prime factors of n and [==] is the Iverson bracket. - Wesley Ivan Hurt, Apr 25 2019

A322902 Numbers whose prime indices are all proper powers of the same number.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
A proper power of n is a number n^k for some positive integer k.
Also the union of A322903 and A000079.

Examples

			The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (1), (2), (11), (3), (4), (111), (22), (5), (6), (1111), (7), (8), (42), (9), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Select[Range[100],SameQ@@radbase/@primeMS[#]&]

A322903 Odd numbers whose prime indices are all proper powers of the same number.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 57, 59, 61, 63, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 169, 171, 173, 179, 181, 189, 191
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
A proper power of n is a number n^k for some positive integer k.

Examples

			The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). The sequence of all integer partitions whose Heinz numbers belong to the sequence begins: (), (2), (3), (4), (2,2), (5), (6), (7), (8), (4,2), (9), (3,3), (2,2,2), (10), (11), (12), (13), (14), (15), (4,4), (16), (8,2), (17), (18), (4,2,2), (19), (20), (21), (22), (2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Select[Range[100],And[OddQ[#],SameQ@@radbase/@primeMS[#]]&]

A356064 Numbers with a prime index other than 1 that is not a prime-power. Complement of A302492.

Original entry on oeis.org

13, 26, 29, 37, 39, 43, 47, 52, 58, 61, 65, 71, 73, 74, 78, 79, 86, 87, 89, 91, 94, 101, 104, 107, 111, 113, 116, 117, 122, 129, 130, 137, 139, 141, 142, 143, 145, 146, 148, 149, 151, 156, 158, 163, 167, 169, 172, 173, 174, 178, 181, 182, 183, 185, 188, 193
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are numbers divisible by a prime number not of the form prime(q^k) where q is a prime number and k >= 1.

Examples

			The terms together with their prime indices begin:
   13: {6}
   26: {1,6}
   29: {10}
   37: {12}
   39: {2,6}
   43: {14}
   47: {15}
   52: {1,1,6}
   58: {1,10}
   61: {18}
   65: {3,6}
   71: {20}
   73: {21}
   74: {1,12}
   78: {1,2,6}
   79: {22}
   86: {1,14}
   87: {2,10}
		

Crossrefs

Heinz numbers of the partitions counted by A023893.
Allowing prime index 1 gives A356066.
A000688 counts factorizations into prime-powers, strict A050361.
A001222 counts prime-power divisors.
A023894 counts partitions into prime-powers, strict A054685.
A034699 gives the maximal prime-power divisor.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A355742 chooses a prime-power divisor of each prime index.
A355743 = numbers whose prime indices are prime-powers, squarefree A356065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@PrimePowerQ/@DeleteCases[primeMS[#],1]&]
Previous Showing 21-30 of 56 results. Next