cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A055651 Table T(m,k)=m^k-k^m (with 0^0 taken to be 1) as square array read by antidiagonals.

Original entry on oeis.org

0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 1, -1, -3, -1, 1, 4, 0, 0, 0, -4, -1, 1, 5, -7, -17, 17, 7, -5, -1, 1, 6, -28, -118, 0, 118, 28, -6, -1, 1, 7, -79, -513, -399, 399, 513, 79, -7, -1, 1, 8, -192, -1844, -2800, 0, 2800, 1844, 192, -8, -1, 1, 9, -431
Offset: 0

Views

Author

Henry Bottomley, Jun 07 2000

Keywords

Crossrefs

Rows A000012 (offset), A023443, A024012, A024026, A024040 and diagonals A000004, A007925, A046065, A055652.

Extensions

Title corrected by Sean A. Irvine, Mar 30 2022

A024014 2^n-n^4.

Original entry on oeis.org

1, 1, -12, -73, -240, -593, -1232, -2273, -3840, -6049, -8976, -12593, -16640, -20369, -22032, -17857, 0, 47551, 157168, 393967, 888576, 1902671, 3960048, 8108767, 16445440, 33163807, 66651888, 133686287, 267820800, 536163631, 1072931824
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n-n^4: this sequence (k=2), A024027 (k=3), A024040 (k=4), A024053 (k=5), A024066 (k=6), A024079 (k=7), A024092 (k=8), A024105 (k=9), A024118 (k=10), A024131 (k=11), A024144 (k=12).

Programs

  • Magma
    [2^n-n^4: n in [0..30]]; // Vincenzo Librandi, Apr 29 2011
    
  • Magma
    I:=[1,1,-12,-73,-240,-593]; [n le 6 select I[n] else 7*Self(n-1)-20*Self(n-2)+30*Self(n-3)-25*Self(n-4)+11*Self(n-5)-2*Self(n-6): n in [1..35]]; // Vincenzo Librandi, Oct 06 2014
  • Maple
    seq(2^n-n^4, n=0..100); # Robert Israel, Oct 06 2014
  • Mathematica
    Table[2^n-n^4,{n,0,100}]
    CoefficientList[Series[(1 - 6 x + x^2 + x^3 + 26 x^4 + x^5)/((1 - 2 x) (1 - x)^5), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 06 2014 *)

Formula

G.f.: (1-6*x+x^2+x^3+26*x^4+x^5) / ((1-2*x)*(1-x)^5). - Vincenzo Librandi, Oct 06 2014
a(n) = 7*a(n-1) -20*a(n-2) +30*a(n-3) -25*a(n-4) +11*a(n-5) -2*a(n-6) for n>5. - Vincenzo Librandi, Oct 06 2014
E.g.f.: exp(2*x) - (x + 7*x^2 + 6*x^3 + x^4)* exp(x). - Robert Israel, Oct 06 2014

A024124 a(n) = 10^n - n^10.

Original entry on oeis.org

1, 9, -924, -58049, -1038576, -9665625, -59466176, -272475249, -973741824, -2486784401, 0, 74062575399, 938082635776, 9862141508151, 99710745345024, 999423349609375, 9998900488372224, 99997984006099551, 999996429532773376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 21*a(n-1) - 165*a(n-2) + 715*a(n-3) - 1980*a(n-4) + 3762*a(n-5) - 5082*a(n-6) + 4950*a(n-7) - 3465*a(n-8) + 1705*a(n-9) - 561*a(n-10) + 111*a(n-11) - 10*a(n-12) for n > 11.
G.f.: (9*x^11 + 10140*x^10 + 477332*x^9 + 4504245*x^8 + 12648018*x^7 + 11793648*x^6 + 3241104*x^5 + 23538*x^4 - 37875*x^3 - 948*x^2 - 12*x + 1)/((x - 1)^11*(10*x - 1)). (End)

A024152 a(n) = 12^n - n^12.

Original entry on oeis.org

1, 11, -3952, -529713, -16756480, -243891793, -2173796352, -13805455393, -68289495040, -277269756129, -938082635776, -2395420006033, 0, 83695120256591, 1227224552173568, 15277275236695743, 184602783918325760
Offset: 0

Views

Author

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (25, -234, 1222, -4147, 9867, -17160, 22308, -21879, 16159, -8866, 3510, -949, 157, -12). - Harvey P. Dale, Jan 27 2019
The conjecture above is correct. From the general formula for {a(n)} we can see that the roots for the characteristic polynomial are one 12 and thirteen 1's, so the characteristic polynomial is (x - 12)*(x - 1)^13 = x^14 - 25*x^13 + 234*x^12 - ... + 12, with corresponding recurrence coefficients 25, -234, ..., -12. - Jianing Song, Jan 28 2019

Crossrefs

Programs

A024138 a(n) = 11^n - n^11.

Original entry on oeis.org

1, 10, -1927, -175816, -4179663, -48667074, -361025495, -1957839572, -8375575711, -29023111918, -74062575399, 0, 2395420006033, 32730551749894, 375700268413577, 4168598413556276, 45932137677527745, 505412756602986138
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 23*a(n-1) - 198*a(n-2) + 946*a(n-3) - 2915*a(n-4) + 6237*a(n-5) - 9636*a(n-6) + 10956*a(n-7) - 9207*a(n-8) + 5665*a(n-9) - 2486*a(n-10) + 738*a(n-11) - 133*a(n-12) + 11*a(n-13) for n > 12.
G.f.: (-12*x^12 - 22383*x^11 - 1677037*x^10 - 24085511*x^9 - 104916261*x^8 - 163227822*x^7 - 91395930*x^6 - 14499462*x^5 + 523986*x^4 + 130461*x^3 + 1959*x^2 + 13*x - 1)/((x - 1)^12*(11*x - 1)). (End)

A099482 Semiprimes of the form 2^k - k^2.

Original entry on oeis.org

1927, 8023, 32543, 2096711, 8388079, 137438952103, 549755812367, 2199023253871, 8796093020359, 140737488353119, 562949953418911, 36028797018960943, 147573952589676408439, 37778931862957161703943
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Examples

			a(2) = 8023 because 8023 = 71*113 = 2^13 - 13^2 = 2^A099481(2) - A099481(2)^2.
		

Crossrefs

Cf. A024012 2^n-n^2, A099481 2^k-k^2 is a semiprime, A072180 2^k-k^2 is prime, A075896 primes of the form 2^k-k^2.

Programs

  • Mathematica
    Select[Table[2^n - n^2, {n, 100}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)

A099481 Numbers k such that 2^k - k^2 is a semiprime.

Original entry on oeis.org

11, 13, 15, 21, 23, 37, 39, 41, 43, 47, 49, 55, 67, 75, 103, 105, 133, 147, 153, 161, 163, 177, 201, 209, 221, 239, 249, 263, 311, 335, 355, 397, 413, 421, 437, 447, 583, 617, 775, 807
Offset: 1

Views

Author

Hugo Pfoertner, Oct 18 2004

Keywords

Comments

The smaller prime factor of the 125-digit semiprime 2^413 - 413^2 has 40 digits; for the 127-digit semiprime 2^421 - 421^2 the smaller prime factor has 45 digits. The next term is >= 583. - Hugo Pfoertner, Oct 14 2007
The factorization of the 176-decimal-digit composite 2^583 - 583^2 using SNFS in YAFU took 55000 seconds on 4 cores of an i5-2400 CPU @ 3.10GHz. a(38) >= 617. - Hugo Pfoertner, Jul 23 2019
a(41) >= 827. - Hugo Pfoertner, Jul 26 2019

Examples

			a(1) = 11 because 2^11 - 11^2 = 1927 = 41*47.
		

Crossrefs

Cf. A024012 (2^n-n^2), A099482 (semiprimes of the form 2^n-n^2), A072180 (2^n-n^2 is prime), A075896 (primes of the form 2^n-n^2).

Extensions

More terms from Hugo Pfoertner, Oct 14 2007
a(37)-a(40) from Hugo Pfoertner, Jul 26 2019

A168298 a(n) = 1 - n^2*2^n.

Original entry on oeis.org

1, -1, -15, -71, -255, -799, -2303, -6271, -16383, -41471, -102399, -247807, -589823, -1384447, -3211263, -7372799, -16777215, -37879807, -84934655, -189267967, -419430399, -924844031, -2030043135, -4437573631, -9663676415, -20971519999, -45365592063
Offset: 0

Views

Author

Keywords

Comments

Numerator of 2^(-n) - n^2.

Crossrefs

Programs

  • Magma
    [1-n^2*2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2016
  • Mathematica
    f[n_]:=2^n-n^2; Table[Numerator[f[n]],{n,0,-50,-1}]
    LinearRecurrence[{7,-18,20,-8},{1,-1,-15,-71},30] (* Harvey P. Dale, May 14 2019 *)
  • PARI
    Vec(-(4*x^3-10*x^2+8*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Feb 10 2015
    

Formula

a(n)= 7*a(n-1) -18*a(n-2) +20*a(n-3) -8*a(n-4) = 1-A007758(n). - R. J. Mathar, Nov 24 2009
G.f.: -(4*x^3-10*x^2+8*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Feb 10 2015
E.g.f.: exp(x) - 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Jul 17 2016

Extensions

Offset corrected, keyword:sign added, and definition simplified by R. J. Mathar, Nov 23 2009

A215892 a(n) = 2^n - n^k, where k is the largest integer such that 2^n >= n^k.

Original entry on oeis.org

0, 5, 0, 7, 28, 79, 192, 431, 24, 717, 2368, 5995, 13640, 29393, 0, 47551, 157168, 393967, 888576, 1902671, 3960048, 1952265, 8814592, 23788807, 55227488, 119868821, 251225088, 516359763, 344741824, 1259979967, 3221225472, 7298466623, 15635064768
Offset: 2

Views

Author

Alex Ratushnyak, Aug 25 2012

Keywords

Examples

			a(2) = 2^2 - 2^2 = 0,
a(3) = 2^3 - 3 = 5,
a(4) = 2^4 - 4^2 = 0,
a(5) = 2^5 - 5^2 = 7,
a(6)..a(9) are 2^n - n^2,
a(10)..a(15) are 2^n - n^3,
a(16)..a(22) are 2^n - n^4, and so on.
		

Crossrefs

Programs

  • Magma
    [2^n - n^Floor(n*Log(n, 2)): n in [2..40]]; // Vincenzo Librandi, Jan 14 2019
  • Mathematica
    Table[2^n - n^Floor[n*Log[n, 2]], {n, 2, 35}] (* T. D. Noe, Aug 27 2012 *)
  • Python
    for n in range(2,100):
        a = 2**n
        k = 0
        while n**(k+1) <= a:
            k += 1
        print(a - n**k, end=',')
    

Formula

a(n) = 2^n - n^floor(n*log_n(2)), where log_n is the base-n logarithm.

A337670 Numbers that can be expressed as both Sum x^y and Sum y^x where the x^y are not equal to y^x for any (x,y) pair and all (x,y) pairs are distinct.

Original entry on oeis.org

432, 592, 1017, 1040, 1150, 1358, 1388, 1418, 1422, 1464, 1554, 1612, 1632, 1713, 1763, 1873, 1889, 1966, 1968, 1973, 1990, 2091, 2114, 2190, 2291, 2320, 2364, 2451, 2589, 2591, 2612, 2689, 2697, 2719, 2753, 2775, 2803, 2813, 2883, 3087, 3127, 3141, 3146
Offset: 1

Views

Author

Matej Veselovac, Sep 15 2020

Keywords

Comments

Numbers m of form m = Sum_{i=1...k} b_i^e_i = Sum_{i=1...k} e_i^b_i such that b_i^e_i != e_i^b_i, b_i > 1, e_i > 1, k = |{{b_i, e_i}, i = 1, 2, ...}|, k > 1.
Terms of the sequence relate to the Diophantine equation Sum_{i=1...k} x_i = 0, k > 1, x_i != 0, where x_i = (b_i^e_i - e_i^b_i) such that b_i > 1, e_i > 1 and (i != j) => ({b_i, e_i} != {b_j, e_j}). That is, we are observing linear combinations of elements from {(r^n - n^r) : n,r > 1} \ {0}, under given conditions.
For sums with k = 20 terms, one infinite family of examples is known: "2^(2t) + t^(4) + 2^(2t+8) + (t+4)^(4) + 2^(2t+16) + (t+8)^(4) + 2^(2t+32) + (t+16)^(4) + 2^(2t+34) + (t+17)^(4) + 4^(t+1) + (2t+2)^(2) + 4^(t+2) + (2t+4)^(2) + 4^(t+10) + (2t+20)^(2) + 4^(t+14) + (2t+28)^(2) + 4^(t+18) + (2t+36)^(2)" is a term of the sequence, for every t > 4.

Examples

			17 = 2^3 + 3^2 = 3^2 + 2^3 is not in the sequence because {2,3} = {3,2} are not distinct.
25 = 3^3 + 2^4 = 3^3 + 4^2 is not in the sequence because 3^3 = 3^3 and 2^4 = 4^2 are commutative.
The smallest term of the sequence is:
  a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
             = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2.
The smallest term that has more than one representation is:
  a(11) = 1554 = 3^2 + 7^2 + 6^3 + 2^8 + 4^5
               = 2^3 + 2^7 + 3^6 + 8^2 + 5^4,
  a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
               = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3.
Smallest terms with k = 5, 6, 7, 8, 9, 10 summands are:
  a(9)  = 1422 = 5^2 + 7^2 + 9^2 + 3^5 + 4^5
               = 2^5 + 2^7 + 2^9 + 5^3 + 5^4,
  a(1)  = 432  = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
               = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2,
  a(2)  = 592  = 3^2 + 5^2 + 7^2 + 4^3 + 2^6 + 5^3 + 2^8
               = 2^3 + 2^5 + 2^7 + 3^4 + 6^2 + 3^5 + 8^2,
  a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
               = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3,
  a(14) = 1713 = 3^2 + 2^5 + 6^2 + 8^2 + 4^3 + 2^7 + 3^5 + 2^9 + 5^4
               = 2^3 + 5^2 + 2^6 + 2^8 + 3^4 + 7^2 + 5^3 + 9^2 + 4^5,
  a(28) = 2451 = 3^2 + 5^2 + 6^2 + 8^2 + 3^4 + 2^7 + 6^3 + 3^5 + 5^4 + 2^10
               = 2^3 + 2^5 + 2^6 + 2^8 + 4^3 + 7^2 + 3^6 + 5^3 + 4^5 + 10^2.
		

Crossrefs

Cf. A337671 (subsequence for k <= 5).
Cf. A005188 (perfect digital invariants).
Cf. Perfect powers: A001597, A072103.
Cf. Commutative powers: A271936.
Cf. Nonnegative numbers of the form (r^n - n^r), for n,r > 1: A045575.
Cf. Numbers of the form (r^n - n^r): A024012 (r = 2), A024026 (r = 3), A024040 (r = 4), A024054 (r = 5), A024068 (r = 6), A024082 (r = 7), A024096 (r = 8), A024110 (r = 9), A024124 (r = 10), A024138 (r = 11), A024152 (r = 12).
Previous Showing 11-20 of 25 results. Next