cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 145 results. Next

A363944 Mean of the multiset of prime indices of n, rounded up.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 2, 6, 3, 3, 1, 7, 2, 8, 2, 3, 3, 9, 2, 3, 4, 2, 2, 10, 2, 11, 1, 4, 4, 4, 2, 12, 5, 4, 2, 13, 3, 14, 3, 3, 5, 15, 2, 4, 3, 5, 3, 16, 2, 4, 2, 5, 6, 17, 2, 18, 6, 3, 1, 5, 3, 19, 3, 6, 3, 20, 2, 21, 7, 3, 4, 5, 3, 22, 2, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Extending the terminology introduced at A124944, this is the "high mean" of prime indices.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with mean 3/2, so a(360) = 2.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A000079(n>0).
Before rounding up we had A326567/A326568.
For mode instead of mean we have A363487, low A363486.
For median instead of mean we have A363942, triangle A124944.
Rounding down instead of up gives A363943, triangle A363945.
The triangle for this statistic (high mean) is A363946.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363947 ranks partitions with rounded mean 1, counted by A363948.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[meanup[prix[n]],{n,100}]

A336102 Number of inseparable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0

Views

Author

Gus Wiseman, Jul 08 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one.
Also the number of compositions of n whose greatest part is greater than the sum of its remaining parts plus one. For example, the a(2) = 1 through a(7) = 8 compositions are:
(2) (3) (4) (5) (6) (7)
(1,3) (1,4) (1,5) (1,6)
(3,1) (4,1) (2,4) (2,5)
(4,2) (5,2)
(5,1) (6,1)
(1,1,4) (1,1,5)
(1,4,1) (1,5,1)
(4,1,1) (5,1,1)

Examples

			The a(2) = 1 through a(7) = 8 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                                {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1222222}
                                {122223}  {1222223}
                                {123333}  {1233333}
		

Crossrefs

The strong (weakly decreasing multiplicities) case is A025065.
The bisection is A049610.
The separable version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
    (* Second program: *)
    CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(2*n) = a(2*n + 1) = A049610(n + 1).
a(n) = 2^(n-1) - A336103(n).
A001792 repeated for n > 1. David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(1 - x)*(x + 1)^2/(2*x^2 - 1)^2. (End)

A336106 Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 30, 44, 58, 82, 105, 146, 186, 252, 318, 423, 530, 695, 863, 1116, 1380, 1763, 2164, 2738, 3345, 4192, 5096, 6334, 7665, 9459, 11395, 13968, 16765, 20425, 24418, 29588, 35251, 42496, 50460, 60547, 71669, 85628
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

Also the number of separable strong multisets of length n covering an initial interval of positive integers. A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (2211)    (421)      (431)
                            (11111)  (3111)    (2221)     (2222)
                                     (21111)   (3211)     (3221)
                                     (111111)  (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The inseparable version is A025065.
The Heinz numbers of these partitions are A335127.
The non-strong version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Heinz numbers of separable partitions are A335433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}]

A338916 Number of integer partitions of n that can be partitioned into distinct pairs of (possibly equal) parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 5, 6, 8, 12, 16, 21, 28, 37, 49, 64, 80, 104, 135, 169, 216, 268, 341, 420, 527, 654, 809, 991, 1218, 1488, 1828, 2213, 2687, 3262, 3934, 4754, 5702, 6849, 8200, 9819, 11693, 13937, 16562, 19659, 23262, 27577, 32493, 38341, 45112, 53059, 62265
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2020

Keywords

Comments

The multiplicities of such a partition form a loop-graphical partition (A339656, A339658).

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (11)  (21)  (22)  (32)    (33)    (43)    (44)    (54)      (55)
              (31)  (41)    (42)    (52)    (53)    (63)      (64)
                    (2111)  (51)    (61)    (62)    (72)      (73)
                            (2211)  (2221)  (71)    (81)      (82)
                            (3111)  (3211)  (3221)  (3222)    (91)
                                    (4111)  (3311)  (3321)    (3322)
                                            (4211)  (4221)    (3331)
                                            (5111)  (4311)    (4222)
                                                    (5211)    (4321)
                                                    (6111)    (4411)
                                                    (222111)  (5221)
                                                    (321111)  (5311)
                                                              (6211)
                                                              (7111)
                                                              (322111)
                                                              (421111)
For example, the partition (4,2,1,1,1,1) can be partitioned into {{1,1},{1,2},{1,4}}, and thus is counted under a(10).
		

Crossrefs

A320912 gives the Heinz numbers of these partitions.
A338915 counts the complement in even-length partitions.
A339563 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by A339620.
A000569 counts graphical partitions, ranked by A320922.
A001358 lists semiprimes, with squarefree case A006881.
A058696 counts partitions of even numbers, ranked by A300061.
A209816 counts multigraphical partitions, ranked by A320924.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A339617 counts non-graphical partitions of 2n, ranked by A339618.
A339655 counts non-loop-graphical partitions of 2n, ranked by A339657.
A339656 counts loop-graphical partitions, ranked by A339658.
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    stfs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[stfs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[Select[IntegerPartitions[n],stfs[Times@@Prime/@#]!={}&]],{n,0,20}]

Formula

A027187(n) = a(n) + A338915(n).

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A339655 Number of non-loop-graphical integer partitions of 2n.

Original entry on oeis.org

0, 0, 1, 3, 7, 14, 28, 51, 91, 156, 260, 425, 680, 1068, 1654, 2524, 3802, 5668, 8350, 12190, 17634, 25306, 36011, 50902, 71441, 99642
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with equal source and target. See A339657 for the Heinz numbers, and A339656 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct pairs;
(2) n can be factored into distinct semiprimes;
(3) the prime signature of n is loop-graphical.

Examples

			The a(2) = 1 through a(5) = 14 partitions (A = 10):
  (4)  (6)    (8)      (A)
       (4,2)  (4,4)    (5,5)
       (5,1)  (5,3)    (6,4)
              (6,2)    (7,3)
              (7,1)    (8,2)
              (5,2,1)  (9,1)
              (6,1,1)  (5,3,2)
                       (5,4,1)
                       (6,2,2)
                       (6,3,1)
                       (7,2,1)
                       (8,1,1)
                       (6,2,1,1)
                       (7,1,1,1)
For example, the seven normal loop-multigraphs with degrees y = (5,3,2) are:
  {{1,1},{1,1},{1,2},{2,2},{3,3}}
  {{1,1},{1,1},{1,2},{2,3},{2,3}}
  {{1,1},{1,1},{1,3},{2,2},{2,3}}
  {{1,1},{1,2},{1,2},{1,2},{3,3}}
  {{1,1},{1,2},{1,2},{1,3},{2,3}}
  {{1,1},{1,2},{1,3},{1,3},{2,2}}
  {{1,2},{1,2},{1,2},{1,3},{1,3}},
but since none of these is a loop-graph (because they are not strict), y is counted under a(5).
		

Crossrefs

A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A062740 counts labeled connected loop-graphs.
A101048 counts partitions into semiprimes.
A320461 ranks normal loop-graphs.
A322661 counts covering loop-graphs.
A320655 counts factorizations into semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A058696 counts partitions of 2n (A300061).
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A209816 counts multigraphical partitions (A320924).
- A339655 (this sequence) counts non-loop-graphical partitions of 2n (A339657).
- A339656 counts loop-graphical partitions (A339658).
- A339617 counts non-graphical partitions of 2n (A339618).
- A000569 counts graphical partitions (A320922).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339656(n).

Extensions

a(7)-a(25) from Andrew Howroyd, Jan 10 2024

A339656 Number of loop-graphical integer partitions of 2n.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 49, 84, 140, 229, 367, 577, 895, 1368, 2064, 3080, 4547, 6642, 9627, 13825, 19704, 27868, 39164, 54656, 75832, 104584
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2020

Keywords

Comments

An integer partition is loop-graphical if it comprises the multiset of vertex-degrees of some graph with loops, where a loop is an edge with two equal vertices. See A339658 for the Heinz numbers, and A339655 for the complement.
The following are equivalent characteristics for any positive integer n:
(1) the multiset of prime factors of n can be partitioned into distinct pairs, i.e., into a set of edges and loops;
(2) n can be factored into distinct semiprimes;
(3) the unordered prime signature of n is loop-graphical.

Examples

			The a(0) = 1 through a(4) = 15 partitions:
  ()  (2)    (2,2)      (3,3)          (3,3,2)
      (1,1)  (3,1)      (2,2,2)        (4,2,2)
             (2,1,1)    (3,2,1)        (4,3,1)
             (1,1,1,1)  (4,1,1)        (2,2,2,2)
                        (2,2,1,1)      (3,2,2,1)
                        (3,1,1,1)      (3,3,1,1)
                        (2,1,1,1,1)    (4,2,1,1)
                        (1,1,1,1,1,1)  (5,1,1,1)
                                       (2,2,2,1,1)
                                       (3,2,1,1,1)
                                       (4,1,1,1,1)
                                       (2,2,1,1,1,1)
                                       (3,1,1,1,1,1)
                                       (2,1,1,1,1,1,1)
                                       (1,1,1,1,1,1,1,1)
For example, there are four possible loop-graphs with degrees y = (2,2,1,1), namely
  {{1,1},{2,2},{3,4}}
  {{1,1},{2,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,4},{2,3}}
  {{1,3},{1,4},{2,2}},
so y is counted under a(3). On the other hand, there are two possible loop-multigraphs with degrees z = (4,2), namely
  {{1,1},{1,1},{2,2}}
  {{1,1},{1,2},{1,2}},
but neither of these is a loop-graph, so z is not counted under a(3).
		

Crossrefs

A339658 ranks these partitions.
A001358 lists semiprimes, with squarefree case A006881.
A006125 counts labeled graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A062740 counts labeled connected loop-graphs.
A320461 ranks normal loop-graphs.
A320655 counts factorizations into semiprimes.
A322353 counts factorizations into distinct semiprimes.
A322661 counts covering loop-graphs.
A339845 counts the same partitions by length, or A339844 with zeros.
The following count vertex-degree partitions and give their Heinz numbers:
- A000070 counts non-multigraphical partitions of 2n (A339620).
- A000569 counts graphical partitions (A320922).
- A058696 counts partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A321728 is conjectured to count non-half-loop-graphical partitions of n.
- A339617 counts non-graphical partitions of 2n (A339618).
- A339655 counts non-loop-graphical partitions of 2n (A339657).
- A339656 [this sequence] counts loop-graphical partitions (A339658).
The following count partitions of even length and give their Heinz numbers:
- A027187 has no additional conditions (A028260).
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Mathematica
    spsbin[{}]:={{}};spsbin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsbin[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpsbin[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@spsbin[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[mpsbin[#],UnsameQ@@#&]!={}&]],{n,0,5}]

Formula

A058696(n) = a(n) + A339655(n).

Extensions

a(8)-a(25) from Andrew Howroyd, Jan 10 2024

A344415 Numbers whose greatest prime index is half their sum of prime indices.

Original entry on oeis.org

4, 9, 12, 25, 30, 40, 49, 63, 70, 84, 112, 121, 154, 165, 169, 198, 220, 264, 273, 286, 289, 325, 351, 352, 361, 364, 390, 442, 468, 520, 529, 561, 595, 624, 646, 714, 741, 748, 765, 832, 841, 850, 874, 918, 931, 952, 961, 988, 1020, 1045, 1173, 1197, 1224
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
       4: {1,1}           198: {1,2,2,5}
       9: {2,2}           220: {1,1,3,5}
      12: {1,1,2}         264: {1,1,1,2,5}
      25: {3,3}           273: {2,4,6}
      30: {1,2,3}         286: {1,5,6}
      40: {1,1,1,3}       289: {7,7}
      49: {4,4}           325: {3,3,6}
      63: {2,2,4}         351: {2,2,2,6}
      70: {1,3,4}         352: {1,1,1,1,1,5}
      84: {1,1,2,4}       361: {8,8}
     112: {1,1,1,1,4}     364: {1,1,4,6}
     121: {5,5}           390: {1,2,3,6}
     154: {1,4,5}         442: {1,6,7}
     165: {2,3,5}         468: {1,1,2,2,6}
     169: {6,6}           520: {1,1,1,3,6}
		

Crossrefs

The partitions with these Heinz numbers are counted by A035363.
The conjugate version is A340387.
This sequence is the case of equality in A344414 and A344416.
A001222 counts prime factors with multiplicity.
A025065 counts palindromic partitions, ranked by A265640.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.
A334201 adds up all prime indices except the greatest.
A344291 lists numbers m with A001222(m) <= A056239(m)/2, counted by A110618.
A344296 lists numbers m with A001222(m) >= A056239(m)/2, counted by A025065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]==Total[primeMS[#]]/2&]

Formula

A061395(a(n)) = A056239(a(n))/2.

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A320923 Heinz numbers of connected graphical partitions.

Original entry on oeis.org

4, 12, 27, 36, 40, 81, 90, 108, 112, 120, 225, 243, 252, 270, 300, 324, 336, 352, 360, 400, 567, 625, 630, 675, 729, 750, 756, 792, 810, 832, 840, 900, 972, 1000, 1008, 1056, 1080, 1120, 1200, 1323, 1575, 1701, 1750, 1764, 1782, 1872, 1875, 1890, 1980, 2025
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected and graphical if it comprises the multiset of vertex-degrees of some connected simple graph.

Examples

			The sequence of all connected-graphical partitions begins: (11), (211), (222), (2211), (3111), (2222), (3221), (22211), (41111), (32111), (3322), (22222), (42211), (32221), (33211), (222211), (421111), (511111), (322111).
		

Crossrefs

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[1000],Select[prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]

A332577 Number of integer partitions of n covering an initial interval of positive integers with unimodal run-lengths.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 25, 30, 36, 40, 45, 54, 59, 68, 79, 86, 96, 112, 121, 135, 155, 168, 188, 214, 230, 253, 284, 308, 337, 380, 407, 445, 497, 533, 580, 645, 689, 748, 828, 885, 956, 1053, 1124, 1212, 1330, 1415, 1519, 1665, 1771
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  1  11  21   211   221    321     2221     3221      3321
         111  1111  2111   2211    3211     22211     22221
                    11111  21111   22111    32111     32211
                           111111  211111   221111    222111
                                   1111111  2111111   321111
                                            11111111  2211111
                                                      21111111
                                                      111111111
		

Crossrefs

Not requiring unimodality gives A000009.
A version for compositions is A227038.
Not requiring the partition to cover an initial interval gives A332280.
The complement is counted by A332579.
Unimodal compositions are A001523.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&unimodQ[Length/@Split[#]]&]],{n,0,30}]
Previous Showing 31-40 of 145 results. Next