A155118
Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.
Original entry on oeis.org
0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
The array starts in row n=0 with columns k>=0 as:
0 1 3 9 27 81 243 729 2187 ... A140429;
1 2 6 18 54 162 486 1458 4374 ... A025192;
1 4 12 36 108 324 972 2916 8748 ... A003946;
3 8 24 72 216 648 1944 5832 17496 ... A080923;
5 16 48 144 432 1296 3888 11664 34992 ... A257970;
11 32 96 288 864 2592 7776 23328 69984 ...
21 64 192 576 1728 5184 15552 46656 139968 ...
Antidiagonal triangle begins as:
0;
1, 1;
1, 2, 3;
3, 4, 6, 9;
5, 8, 12, 18, 27;
11, 16, 24, 36, 54, 81;
21, 32, 48, 72, 108, 162, 243;
43, 64, 96, 144, 216, 324, 486, 729;
85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
-
t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
[t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
-
T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
-
t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
-
def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021
A171501
Inverse binomial transform of A084640.
Original entry on oeis.org
0, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881
Offset: 0
-
I:=[0, 1, 3]; [n le 3 select I[n] else -Self(n-1) + 2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 18 2012
-
CoefficientList[Series[x*(1 + 4*x)/((1 + 2*x)*(1 - x)), {x, 0, 30}], x]
LinearRecurrence[{-1,2},{0,1,3},40] (* Harvey P. Dale, Jan 14 2020 *)
A202209
Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 13, 5, 0, 0, 34, 19, 1, 0, 0, 89, 65, 8, 0, 0, 0, 233, 210, 42, 1, 0, 0, 0, 610, 654, 183, 11, 0, 0, 0, 0, 1597, 1985, 717, 74, 1, 0, 0, 0, 0, 4181, 5911, 2622, 394, 14, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
2, 0
5, 1, 0
13, 5, 0, 0
34, 19, 1, 0, 0
89, 65, 8, 0, 0, 0
233, 210, 42, 1, 0, 0, 0
A234713
Triangle, read by rows, based on the Fibonacci numbers.
Original entry on oeis.org
0, 1, 1, 1, 3, 2, 2, 6, 7, 3, 3, 13, 20, 14, 4, 5, 25, 51, 51, 25, 5, 8, 48, 118, 154, 111, 41, 6, 13, 89, 260, 416, 393, 217, 63, 7, 21, 163, 548, 1042, 1218, 890, 392, 92, 8, 34, 294, 1121, 2465, 3435, 3127, 1842, 666, 129, 9, 55, 525, 2236, 5586, 9035, 9845
Offset: 0
Triangle begins:
0
1, 1
1, 3, 2
2, 6, 7, 3
3, 13, 20, 14, 4
5, 25, 51, 51, 25, 5
8, 48, 118, 154, 111, 41, 6
13, 89, 260, 416, 393, 217, 63, 7
21, 163, 548, 1042, 1218, 890, 392, 92, 8
A238941
Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 8, 4, 1, 13, 21, 13, 6, 1, 34, 55, 40, 25, 7, 1, 89, 144, 120, 90, 33, 9, 1, 233, 377, 354, 300, 132, 51, 10, 1, 610, 987, 1031, 954, 483, 234, 62, 12, 1, 1597, 2584, 2972, 2939, 1671, 951, 308, 86, 13, 1, 4181, 6765, 8495, 8850, 5561, 3573, 1345, 480, 100, 15, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
5, 8, 4, 1;
13, 21, 13, 6, 1;
34, 55, 40, 25, 7, 1;
89, 144, 120, 90, 33, 9, 1;
233, 377, 354, 300, 132, 51, 10, 1;
-
nmax=10; Column[CoefficientList[Series[CoefficientList[Series[(1 - 2*x + x*y)/(1 - 3*x + x^2 - x^2*y^2), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)
Original entry on oeis.org
1, 10, 18, 54, 70, 78, 110, 162, 174, 198, 222, 230, 234, 246, 294, 414, 426, 438, 450, 470, 486, 534, 594, 666, 702, 770, 846, 858, 882, 910, 1070, 1158, 1218, 1242, 1314, 1350, 1458, 1610, 1722, 1782, 1794, 1866, 1914, 1926, 1938, 1950, 1998, 2058, 2106, 2250, 2442, 2530, 2538, 2574, 2590, 2646, 2886
Offset: 1
a(3) = 18 is in the sequence because psi(phi(18)) = phi(psi(18)) = 12 but psi(phi(9)) = 12 <> 4 = phi(psi(9)).
-
psi:= proc(n) n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
A290002:= select(psi @ numtheory:-phi = numtheory:-phi @ psi, {$1..3000}):
sort(convert(A290002 minus map(`*`,A290002,2), list));
-
f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; With[{s = Select[Range[3000], f[EulerPhi@ #] == EulerPhi[f@ #] &]}, Select[s, FreeQ[s, #/2] &]] (* Michael De Vlieger, Sep 06 2017 *)
A380905
Smallest number k such that k^(2*3^n) - 6 is prime.
Original entry on oeis.org
3, 5, 23, 7, 433, 2447, 9377, 82597, 134687
Offset: 0
For n=0, k^(2*3^0) - 6 is prime for the first time at a(0) = k = 3.
For n=5, k^(2*3^5) - 6 is prime for the first time at a(5) = k = 2447.
-
a(n) = my(p=3,q=2*3^n); while (!ispseudoprime(p^q-6), p+=2); p; \\ Michel Marcus, Feb 08 2025
-
from sympy import isprime
from itertools import count
def a(n): return next(k for k in count(2) if k%10 in {3,5,7} and isprime(k**(2*3**n)-6))
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 4, 4, 6, 4, 8, 8, 14, 16, 8, 16, 16, 30, 44, 40, 16, 32, 32, 62, 104, 128, 96, 32, 64, 64, 126, 228, 336, 352, 224, 64, 128, 128, 254, 480, 792, 1024, 928, 512, 128, 256, 256, 510, 988, 1752, 2608, 2976, 2368, 1152, 256
Offset: 0
First few rows of the triangle:
1;
1, 1;
2, 2, 2;
4, 4, 6, 4;
8, 8, 14, 16, 8;
16, 16, 30, 44, 40, 16;
32, 32, 62, 104, 128, 96, 32;
...
Original entry on oeis.org
1, 3, 13, 55, 217, 811, 2917, 10207, 34993, 118099, 393661, 1299079, 4251529, 13817467, 44641045, 143489071, 459165025, 1463588515, 4649045869, 14721978583, 46490458681, 146444944843, 460255540933, 1443528742015, 4518872583697, 14121476824051, 44059007691037, 137260754729767
Offset: 0
-
a137576(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
a(n) = a137576((3^n-1)/2); \\ Michel Marcus, Dec 18 2018
A153310
Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x); Row sums are 2*3^n.
Original entry on oeis.org
2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 54, 77, 27, 2, 2, 137, 212, 104, 29, 2, 2, 382, 592, 316, 133, 31, 2, 2, 1113, 1703, 908, 449, 164, 33, 2, 2, 3302, 5003, 2611, 1357, 613, 197, 35, 2, 2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2, 2, 29550, 44414, 22480, 11582
Offset: 0
{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 54, 77, 27, 2},
{2, 137, 212, 104, 29, 2},
{2, 382, 592, 316, 133, 31, 2},
{2, 1113, 1703, 908, 449, 164, 33, 2},
{2, 3302, 5003, 2611, 1357, 613, 197, 35, 2},
{2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2},
{2, 29550, 44414, 22480, 11582, 5938, 2780, 1042, 269, 39, 2}
-
Clear[p, n, m, x];
p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2;
p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 1)*x);
Table[ExpandAll[p[x, n]], {n, 0, 10}];
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
Comments