cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 84 results. Next

A155118 Array T(n,k) read by antidiagonals: the k-th term of the n-th iterated differences of A140429.

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 3, 4, 6, 9, 5, 8, 12, 18, 27, 11, 16, 24, 36, 54, 81, 21, 32, 48, 72, 108, 162, 243, 43, 64, 96, 144, 216, 324, 486, 729, 85, 128, 192, 288, 432, 648, 972, 1458, 2187, 171, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 341, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0

Views

Author

Paul Curtz, Jan 20 2009

Keywords

Comments

Deleting column k=0 and reading by antidiagonals yields A036561.
Deleting column k=0 and reading the antidiagonals downwards yields A175840.

Examples

			The array starts in row n=0 with columns k>=0 as:
   0   1    3    9    27    81    243    729    2187  ... A140429;
   1   2    6   18    54   162    486   1458    4374  ... A025192;
   1   4   12   36   108   324    972   2916    8748  ... A003946;
   3   8   24   72   216   648   1944   5832   17496  ... A080923;
   5  16   48  144   432  1296   3888  11664   34992  ... A257970;
  11  32   96  288   864  2592   7776  23328   69984  ...
  21  64  192  576  1728  5184  15552  46656  139968  ...
Antidiagonal triangle begins as:
   0;
   1,   1;
   1,   2,   3;
   3,   4,   6,   9;
   5,   8,  12,  18,  27;
  11,  16,  24,  36,  54,  81;
  21,  32,  48,  72, 108, 162, 243;
  43,  64,  96, 144, 216, 324, 486, 729;
  85, 128, 192, 288, 432, 648, 972, 1458, 2187; - _G. C. Greubel_, Mar 25 2021
		

Crossrefs

Programs

  • Magma
    t:= func< n,k | k eq 0 select (2^(n-k) -(-1)^(n-k))/3 else 2^(n-k)*3^(k-1) >;
    [t(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 25 2021
    
  • Maple
    T:=proc(n,k)if(k>0)then return 2^n*3^(k-1):else return (2^n - (-1)^n)/3:fi:end:
    for d from 0 to 8 do for m from 0 to d do print(T(d-m,m)):od:od: # Nathaniel Johnston, Apr 13 2011
  • Mathematica
    t[n_, k_]:= If[k==0, (2^(n-k) -(-1)^(n-k))/3, 2^(n-k)*3^(k-1)];
    Table[t[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 25 2021 *)
  • Sage
    def A155118(n,k): return (2^(n-k) -(-1)^(n-k))/3 if k==0 else 2^(n-k)*3^(k-1)
    flatten([[A155118(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 25 2021

Formula

For the square array:
T(n,k) = 2^n*3^(k-1), k>0.
T(n,k) = T(n-1,k+1) - T(n-1,k), n>0.
Rows:
T(0,k) = A140429(k) = A000244(k-1).
T(1,k) = A025192(k).
T(2,k) = A003946(k).
T(3,k) = A080923(k+1).
T(4,k) = A257970(k+3).
Columns:
T(n,0) = A001045(n) (Jacobsthal numbers J_{n}).
T(n,1) = A000079(n).
T(n,2) = A007283(n).
T(n,3) = A005010(n).
T(n,4) = A175806(n).
T(0,k) - T(k+1,0) = 4*A094705(k-2).
From G. C. Greubel, Mar 25 2021: (Start)
For the antidiagonal triangle:
t(n, k) = T(n-k, k).
t(n, k) = (2^(n-k) - (-1)^(n-k))/3 (J_{n-k}) if k = 0 else 2^(n-k)*3^(k-1).
Sum_{k=0..n} t(n, k) = 3^n - J_{n+1}, where J_{n} = A001045(n).
Sum_{k=0..n} t(n, k) = A004054(n-1) for n >= 1. (End)

Extensions

a(22) - a(57) from Nathaniel Johnston, Apr 13 2011

A171501 Inverse binomial transform of A084640.

Original entry on oeis.org

0, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881
Offset: 0

Views

Author

Paul Curtz, Dec 10 2009

Keywords

Comments

a(n) and differences are
0, 1, 3, -1, 7, -9,
1, 2, -4, 8, -16, 32, =(-1)^(n+1) * A171449(n),
1, -6, 12, -24, 48, -96,
-7, 18, -36, 72, -144, 288,
25, -54, 108, -216, 432, -864,
Vertical: 1) 0 followed with A168589(n).
2) (-1 followed with A008776(n) ) signed. See A025192(n).
Main diagonal: see A167747(1+n). - Paul Curtz, Jun 16 2011

Programs

  • Magma
    I:=[0, 1, 3]; [n le 3 select I[n] else -Self(n-1) + 2*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 18 2012
  • Mathematica
    CoefficientList[Series[x*(1 + 4*x)/((1 + 2*x)*(1 - x)), {x, 0, 30}], x]
    LinearRecurrence[{-1,2},{0,1,3},40] (* Harvey P. Dale, Jan 14 2020 *)

Formula

a(n) = A140966(n), n>0.
G.f.: x*(1+4*x) / ( (1+2*x)*(1-x) ). - R. J. Mathar, Jun 14 2011
a(1+n)= (-1)^(1+n) * A001045(1+n) + 2. - Paul Curtz, Jun 16 2011

Extensions

Mathematica program by Olivier Gérard, Jul 06 2011

A202209 Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 13, 5, 0, 0, 34, 19, 1, 0, 0, 89, 65, 8, 0, 0, 0, 233, 210, 42, 1, 0, 0, 0, 610, 654, 183, 11, 0, 0, 0, 0, 1597, 1985, 717, 74, 1, 0, 0, 0, 0, 4181, 5911, 2622, 394, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x+x^2), x^2/(1-3x+x^2)) .

Examples

			Triangle begins :
1
2, 0
5, 1, 0
13, 5, 0, 0
34, 19, 1, 0, 0
89, 65, 8, 0, 0, 0
233, 210, 42, 1, 0, 0, 0
		

Crossrefs

Cf. A000045, A000079, A001519, A001870, A001906, A126124, A202207 (antidiagonal sums)

Formula

T(n,k) = 3*T(n-1,k) - T(n-2,k) + T(n-2,k-1).
G.f.: (1-x)/(1-3x+(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively.
T(n,0) = A122367(n) = A000045(2n+1).

A234713 Triangle, read by rows, based on the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 2, 2, 6, 7, 3, 3, 13, 20, 14, 4, 5, 25, 51, 51, 25, 5, 8, 48, 118, 154, 111, 41, 6, 13, 89, 260, 416, 393, 217, 63, 7, 21, 163, 548, 1042, 1218, 890, 392, 92, 8, 34, 294, 1121, 2465, 3435, 3127, 1842, 666, 129, 9, 55, 525, 2236, 5586, 9035, 9845
Offset: 0

Views

Author

Philippe Deléham, Dec 29 2013

Keywords

Comments

First column is the Fibonacci sequence.
Sum_{k=0..n} T(n,k)*2^k = -A106732(n).

Examples

			Triangle begins:
0
1, 1
1, 3, 2
2, 6, 7, 3
3, 13, 20, 14, 4
5, 25, 51, 51, 25, 5
8, 48, 118, 154, 111, 41, 6
13, 89, 260, 416, 393, 217, 63, 7
21, 163, 548, 1042, 1218, 890, 392, 92, 8
		

Crossrefs

Cf. Diagonals: A001477, A004006.
Cf. Columns: A000045 (Fibonacci), A131913, A261054.
Cf. A025192 (row sums for n>0), A006054 (diagonal sums)

Formula

G.f.: (y+1)*x/(1-(2y+1)*x+(y^2-1)*x^2).
T(n,k)=T(n-1,k)+2*T(n-1,k-1)+T(n-2,k)-T(n-2,k-2), T(0,0)=0, T(1,0)=1, T(1,1)=1, T(n,k)=0 if k<0 or if k>n.

A238941 Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 8, 4, 1, 13, 21, 13, 6, 1, 34, 55, 40, 25, 7, 1, 89, 144, 120, 90, 33, 9, 1, 233, 377, 354, 300, 132, 51, 10, 1, 610, 987, 1031, 954, 483, 234, 62, 12, 1, 1597, 2584, 2972, 2939, 1671, 951, 308, 86, 13, 1, 4181, 6765, 8495, 8850, 5561, 3573, 1345, 480, 100, 15, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 07 2014

Keywords

Comments

Row sums are A025192(n).

Examples

			Triangle begins:
1;
1, 1;
2, 3, 1;
5, 8, 4, 1;
13, 21, 13, 6, 1;
34, 55, 40, 25, 7, 1;
89, 144, 120, 90, 33, 9, 1;
233, 377, 354, 300, 132, 51, 10, 1;
		

Crossrefs

Cf. Columns: A001519, A001906, A238846, A001871.
Cf. Diagonals: A000012, A032766.

Programs

  • Mathematica
    nmax=10; Column[CoefficientList[Series[CoefficientList[Series[(1 - 2*x + x*y)/(1 - 3*x + x^2 - x^2*y^2), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)

Formula

G.f. for the column k: x^k*(1-2*x)^A059841(k)/(1-3*x+x^2)^A008619(k).
G.f.: (1-2*x+x*y)/(1-3*x+x^2-x^2*y^2).
T(n,k) = 3*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000007(n), A001519(n), A025192(n), A030195(n+1) for x = -1, 0, 1, 2 respectively.
Sum_{k = 0..n} T(n,k)*3^k = A015525(n) + A015525(n+1).

Extensions

Data section corrected and extended by Indranil Ghosh, Mar 14 2017

A291931 Primitive elements of A290002.

Original entry on oeis.org

1, 10, 18, 54, 70, 78, 110, 162, 174, 198, 222, 230, 234, 246, 294, 414, 426, 438, 450, 470, 486, 534, 594, 666, 702, 770, 846, 858, 882, 910, 1070, 1158, 1218, 1242, 1314, 1350, 1458, 1610, 1722, 1782, 1794, 1866, 1914, 1926, 1938, 1950, 1998, 2058, 2106, 2250, 2442, 2530, 2538, 2574, 2590, 2646, 2886
Offset: 1

Views

Author

Robert Israel, Sep 06 2017

Keywords

Comments

Members k of A290002 such that k/2 is not in A290002.
Includes all members of A025192 except 2 and 6.

Examples

			a(3) = 18 is in the sequence because psi(phi(18)) = phi(psi(18)) = 12 but psi(phi(9)) = 12 <> 4 = phi(psi(9)).
		

Crossrefs

Programs

  • Maple
    psi:= proc(n)  n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
    A290002:= select(psi @ numtheory:-phi = numtheory:-phi @ psi, {$1..3000}):
    sort(convert(A290002 minus map(`*`,A290002,2), list));
  • Mathematica
    f[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors@ n}]; With[{s = Select[Range[3000], f[EulerPhi@ #] == EulerPhi[f@ #] &]}, Select[s, FreeQ[s, #/2] &]] (* Michael De Vlieger, Sep 06 2017 *)

A380905 Smallest number k such that k^(2*3^n) - 6 is prime.

Original entry on oeis.org

3, 5, 23, 7, 433, 2447, 9377, 82597, 134687
Offset: 0

Views

Author

Jakub Buczak, Feb 07 2025

Keywords

Comments

Terms must have an ending digit of 3, 5 or 7. If k ends in 1 or 9, then k^(2*3^n)-6 ends in a 5, which is not prime.
a(7) is the first composite term. - Michael S. Branicky, Feb 24 2025

Examples

			For n=0, k^(2*3^0) - 6 is prime for the first time at a(0) = k = 3.
For n=5, k^(2*3^5) - 6 is prime for the first time at a(5) = k = 2447.
		

Crossrefs

Cf. Subsequence of A382246.
Cf. A028879 (a(0)), A239414 (a(1)) for the first term.

Programs

  • PARI
    a(n) = my(p=3,q=2*3^n); while (!ispseudoprime(p^q-6), p+=2); p; \\ Michel Marcus, Feb 08 2025
  • Python
    from sympy import isprime
    from itertools import count
    def a(n): return next(k for k in count(2) if k%10 in {3,5,7} and isprime(k**(2*3**n)-6))
    

Extensions

a(7) from Michael S. Branicky, Feb 24 2025
a(8) from Georg Grasegger, Apr 17 2025

A134318 A007318 * A134317.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 4, 6, 4, 8, 8, 14, 16, 8, 16, 16, 30, 44, 40, 16, 32, 32, 62, 104, 128, 96, 32, 64, 64, 126, 228, 336, 352, 224, 64, 128, 128, 254, 480, 792, 1024, 928, 512, 128, 256, 256, 510, 988, 1752, 2608, 2976, 2368, 1152, 256
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

Row sums = A025192: (1, 2, 6, 18, 54, 162, ...).

Examples

			First few rows of the triangle:
   1;
   1,  1;
   2,  2,  2;
   4,  4,  6,   4;
   8,  8, 14,  16,   8;
  16, 16, 30,  44,  40, 16;
  32, 32, 62, 104, 128, 96, 32;
  ...
		

Crossrefs

Formula

Binomial transform of A134317, as infinite lower triangular matrices.

A140320 a(n) = A137576((3^n-1)/2).

Original entry on oeis.org

1, 3, 13, 55, 217, 811, 2917, 10207, 34993, 118099, 393661, 1299079, 4251529, 13817467, 44641045, 143489071, 459165025, 1463588515, 4649045869, 14721978583, 46490458681, 146444944843, 460255540933, 1443528742015, 4518872583697, 14121476824051, 44059007691037, 137260754729767
Offset: 0

Views

Author

Vladimir Shevelev, May 26 2008

Keywords

Comments

Conjecture. a(n) = 2n*3^(n-1)+1.
If conjecture is true then limsup(A137576(n)/n)=infinity while liminf(A137576(n)/n)=2 with a realization on primes.
a(n) is also the number of edges in the graph generated from the n-dimensional hypercube (plus 1) in the following manner: connect all (d + 1)-dimensional faces to the d faces that are incident. Each d-dimensional face should be incident on (n - d) (d + 1)-dimensional faces. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]

Crossrefs

Programs

  • PARI
    a137576(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
    a(n) = a137576((3^n-1)/2); \\ Michel Marcus, Dec 18 2018

Formula

Sum_{m = 0}^{n} 2^(n - m) * binomial(n,m) is the number of m-dimensional faces in the n-dimensional hypercube. Consequently, Sum_{m = 0..n} (n - m) * 2^(n - m) * binomial(n,m) gives the number of incidence edges, which yields said sequence minus 1. The recurrence relation is: a(n) = 3 * a(n - 1) + 2 * 3^(n - 1) - 2. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]
Empirical G.f.: (1-4*x+7*x^2)/(1-7*x+15*x^2-9*x^3). [Colin Barker, Jan 09 2012]

Extensions

More terms from Michel Marcus, Dec 18 2018

A153310 Coefficient triangle sequence of a polynomial recursion: p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x); Row sums are 2*3^n.

Original entry on oeis.org

2, 3, 3, 2, 14, 2, 2, 25, 25, 2, 2, 54, 77, 27, 2, 2, 137, 212, 104, 29, 2, 2, 382, 592, 316, 133, 31, 2, 2, 1113, 1703, 908, 449, 164, 33, 2, 2, 3302, 5003, 2611, 1357, 613, 197, 35, 2, 2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2, 2, 29550, 44414, 22480, 11582
Offset: 0

Views

Author

Roger L. Bagula, Dec 23 2008

Keywords

Comments

Row sums:
{2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098,...}.

Examples

			{2},
{3, 3},
{2, 14, 2},
{2, 25, 25, 2},
{2, 54, 77, 27, 2},
{2, 137, 212, 104, 29, 2},
{2, 382, 592, 316, 133, 31, 2},
{2, 1113, 1703, 908, 449, 164, 33, 2},
{2, 3302, 5003, 2611, 1357, 613, 197, 35, 2},
{2, 9865, 14866, 7614, 3968, 1970, 810, 232, 37, 2},
{2, 29550, 44414, 22480, 11582, 5938, 2780, 1042, 269, 39, 2}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, n, m, x];
    p[x, 0] = 2; p[x, 1] = 3*x + 3; p[x, 2] = 2*x^2 + 14*x + 2;
    p[x_, n_] := p[x, n] = (x + 1)*(p[x, n - 1] + 3^(n - 1)*x);
    Table[ExpandAll[p[x, n]], {n, 0, 10}];
    Table[CoefficientList[p[x, n], x], {n, 0, 10}];
    Flatten[%]

Formula

p(x,n)=(x + 1)*(p(x, n - 1) + 3^(n - 1)*x).
Previous Showing 71-80 of 84 results. Next