cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A379173 G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^2.

Original entry on oeis.org

1, 3, 11, 53, 284, 1630, 9794, 60830, 387390, 2515892, 16599051, 110943779, 749603067, 5111606801, 35133394554, 243146923574, 1692918638012, 11850006727400, 83341778073920, 588646472669454, 4173607638548291, 29694593381322531, 211941668053441490, 1517087043428034420
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-k+1, k)*binomial(3*n-3*k+1, n-k)/(n-k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-k+1,k) * binomial(3*n-3*k+1,n-k)/(n-k+1).

A052727 Expansion of e.g.f. 1/2-1/2*(1-4*x-4*x^2)^(1/2).

Original entry on oeis.org

0, 1, 4, 24, 288, 4800, 103680, 2741760, 85800960, 3100446720, 127037030400, 5819550105600, 294727768473600, 16350861400473600, 986127353590579200, 64238655955009536000, 4495021381191204864000, 336249161369543245824000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple context-free grammar in a labeled universe.

Programs

  • Maple
    spec := [S,{B=Prod(S,S),S=Union(B,Z,C),C=Prod(Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[1/2-1/2*(1-4*x-4*x^2)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)

Formula

Recurrence: {a(1)=1, a(2)=4, (-4*n^2+4)*a(n) +(-4*n-2)*a(n+1) +a(n+2) =0.
a(n) ~ sqrt(2-sqrt(2))* ((1+sqrt(2))/exp(1))^n * (2*n)^(n-1). - Vaclav Kotesovec, Sep 30 2013
a(n) = n!*A025227(n). - R. J. Mathar, Oct 18 2013

A068765 Generalized Catalan numbers 3*x*A(x)^2 -A(x) +1 -2*x = 0.

Original entry on oeis.org

1, 1, 6, 39, 270, 1962, 14796, 114831, 911574, 7368894, 60457428, 502162902, 4214515212, 35686162548, 304491863448, 2615468845311, 22598114065254, 196269877811574, 1712578870493316, 15005719955119698
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n)=K(3,3; n)/3 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-12*x*(1-2*x)])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n)=(3^n)*p(n, -2/3) with the row polynomials p(n, x) defined from array A068763.
a(n+1)= 3*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-12*x*(1-2*x)))/(6*x).
Recurrence: (n+1)*a(n) = 24*(2-n)*a(n-2) + 6*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(6+6*sqrt(3)) * (6+2*sqrt(3))^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A176703 Coefficients of a recursive polynomial based on Chaitin's S expressions: a(0)=1; a(1)=x; a(2)=1; a(n)=vector(a(n-1)).reverse(a(n-1)).

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 1, 4, 2, 2, 9, 8, 4, 2, 22, 24, 14, 8, 56, 70, 52, 24, 5, 146, 208, 176, 84, 30, 388, 624, 574, 320, 120, 14, 1048, 1876, 1868, 1184, 470, 112, 2869, 5648, 6088, 4236, 1900, 560, 42, 7942, 17040, 19804, 14928, 7560, 2492, 420, 22192, 51526, 64232
Offset: 0

Views

Author

Roger L. Bagula, Apr 24 2010

Keywords

Comments

The result is an alternative way to expand s expressions as a binary rooted tree recursion.

Examples

			{1},
{0, 1},
{1, 0},
{2, 0, 1},
{4, 2, 2},
{9, 8, 4, 2},
{22, 24, 14, 8},
{56, 70, 52, 24, 5},
{146, 208, 176, 84, 30},
{388, 624, 574, 320, 120, 14},
{1048, 1876, 1868, 1184, 470, 112},
{2869, 5648, 6088, 4236, 1900, 560, 42},
{7942, 17040, 19804, 14928, 7560, 2492, 420},
{22192, 51526, 64232, 52208, 29190, 10864, 2520, 132},
{62510, 156128, 207808, 181320, 110260, 46256, 12684, 1584},
{177308, 473952, 670966, 625408, 410400, 190932, 59976, 11088, 429}
		

References

  • G. J. Chaitin, Algorithmic Information Theory, Cambridge Press, 1987, page 169

Crossrefs

Programs

  • Mathematica
    a[0] := 1; a[1] := x; a[2] = 1;
    a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
    Table[ CoefficientList[a[n], x], {n, 0, 15}];
    Flatten[%]
  • PARI
    {T(n, k) = if( 2*k-1  > n, 0, polcoeff( polcoeff( ( 1 - sqrt( (1 - 2*x)^2 - 4*x^2 * (x + y - 2*x*y) + x^2*O(x^n))) / (2*x), n), k))} /* Michael Somos, Jan 09 2012 */

Formula

a(0)=1;a(1)=x;a(2)=1;
a(n)=vector(a(n-1)).reverse(a(n-1));
t(n,m)=coefficients(a(n) in x)
Let b(0) = b(2) = 1, b(1) = x, and b(n) = Sum_{i=1..n} b(i-1) * b(n-i) if n>2. Then T(n, k) = coefficient of x^k in b(n) where 0 <= k <= (n+1)/2.
G.f. A(x,y) satisfies A(x,y) = 1 - x * (1 - x - y + 2*x*y) + x * A(x,y)^2. - Michael Somos, Jan 09 2012
G.f.: ( 1 - sqrt( (1 - 2*x)^2 - 4*x^2 * (x + y - 2*x*y) )) / (2*x). - Michael Somos, Jan 09 2012
Row sums are A025262 if offset 0.

A290147 Expansion of (1-sqrt(1-8*x-8*x^2))/(4*x).

Original entry on oeis.org

1, 3, 12, 66, 408, 2712, 18912, 136488, 1010784, 7637664, 58650240, 456377664, 3590674176, 28516332288, 228297907200, 1840515987072, 14929020470784, 121749590032896, 997676696045568, 8210704762960896, 67835018440593408, 562407734010335232, 4677727530446635008
Offset: 0

Views

Author

R. J. Mathar, Jul 21 2017

Keywords

Comments

By the application of enumerating Rota-Baxter word (not following the g.f.) the value at index 0 is set to a(0)=1.
Given y-2*y^2=x+x^2, expand y as a series in x, and then this sequence gives the coefficients: y=x+3*x^2+12*x^3+66*x^4+... (see PariGP code). - Robert Munafo, Oct 17 2024

Crossrefs

Cf. A025227.

Programs

  • Maple
    f:= gfun:-rectoproc({8*n*a(n)+(12+8*n)*a(1+n)+(-3-n)*a(n+2), a(0) = 1, a(1) = 3},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Jul 21 2017
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8x-8x^2])/(4x),{x,0,30}],x] (* Harvey P. Dale, Feb 10 2018 *)
  • PARI
    my(x='x+O('x^99)); Vec((1-sqrt(1-8*x-8*x^2))/(4*x)) \\ Altug Alkan, Jul 22 2017
    
  • PARI
    my(y=x+O(x)); for(n=1,23,y=x+x^2+2*y^2); Vec(y) \\ Robert Munafo, Oct 17 2024

Formula

D-finite with recurrence (n+1)*a(n) +4*(-2*n+1)*a(n-1) +8*(-n+2)*a(n-2)=0. - R. J. Mathar, Jul 21 2017
a(n) ~ sqrt(3 - sqrt(6)) * 2^(n - 3/2) * (2 + sqrt(6))^(n+1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2024

A337991 Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 06 2020

Keywords

Examples

			Triangle begins as:
   1;
   1,   1;
   1,   2,   1;
   2,   5,   4,   1;
   4,  13,  15,   7,   1;
   9,  35,  52,  36,  11,   1;
  21,  96, 175, 160,  75,  16,  1;
  51, 267, 576, 655, 415, 141, 22,  1;
  ...
		

Crossrefs

Diagonals include: A000124, A006008.
Sums include: A000007 (signed row), A019590 (signed diagonal), A025227 (row), A102407 (diagonal).

Programs

  • Magma
    B:=Binomial;
    A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
    [A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
    
  • Mathematica
    T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
  • Maxima
    T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
    
  • Python
    def A337991(n,k):
        b=binomial
        if n==0: return 1
        else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
    # SageMath
    flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024

Formula

G.f.: ( 1 - x*(y-1)- sqrt(x^2*(y^2-2*y-3) - 2*x*(y+1) + 1) )/(2*x).
From G. C. Greubel, Oct 31 2024: (Start)
T(n, k) = binomial(n, 1-k)*binomial(n+k-1, k)*Hypergeometric3F2([1-n, (1 -n -k)/2, (2-n-k)/2], [2-k, 1-n-k], 4), with T(0, 0) = 1.
T(n, 0) = A086246(n+1).
T(n, n-1) = A000124(n-1), n >= 1.
T(n, n-2) = A006008(n-1), n >= 2.
T(n, n-3) = (1/72)*(n^4 -6*n^3 +47*n^2 -114*n +144)*binomial(n-1,2), n >= 3.
T(n, n-4) = (1/480)*(n-2)*(n^4 -8*n^3 +99*n^2 -332*n +960)*binomial(n-1,3), n >= 4.
Sum_{k=0..n} T(n, k) = A025227(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A102407(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A019590(n+1). (End)

A381937 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k+1,n-k)/(4*k+1).
a(n) = A365178(n) + A365178(n-1).

A381940 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 2, 7, 51, 440, 4170, 41921, 438972, 4736281, 52286520, 587774685, 6705201456, 77426676892, 903251324476, 10629495065550, 126032922655030, 1504194199010435, 18056321542477095, 217859030049153565, 2640609137351540510, 32137554969392230950, 392580762083089376630
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(k+1, n-k)/(5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(k+1,n-k)/(5*k+1).
a(n) = A365184(n) + A365184(n-1).

A176698 A symmetrical sum triangle sequence:a(n)=vector(a(n-1)).Reverse(vector(a(n-1));a(0)=1;a(1)=2;t(n,m)=2+a(n)-a(m)-a(n-m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 8, 8, 1, 1, 28, 34, 28, 1, 1, 104, 130, 130, 104, 1, 1, 400, 502, 522, 502, 400, 1, 1, 1584, 1982, 2078, 2078, 1982, 1584, 1, 1, 6416, 7998, 8390, 8466, 8390, 7998, 6416, 1, 1, 26464, 32878, 34454, 34826, 34826, 34454, 32878, 26464, 1, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 24 2010

Keywords

Comments

Row sums are:
{1, 2, 4, 18, 92, 470, 2328, 11290, 54076, 257246, 1219296,...}.

Examples

			{1},
{1, 1},
{1, 2, 1},
{1, 8, 8, 1},
{1, 28, 34, 28, 1},
{1, 104, 130, 130, 104, 1},
{1, 400, 502, 522, 502, 400, 1},
{1, 1584, 1982, 2078, 2078, 1982, 1584, 1},
{1, 6416, 7998, 8390, 8466, 8390, 7998, 6416, 1},
{1, 26464, 32878, 34454, 34826, 34826, 34454, 32878, 26464, 1},
{1, 110784, 137246, 143654, 145210, 145506, 145210, 143654, 137246, 110784, 1}
		

Crossrefs

Programs

  • Mathematica
    a[0] := 1; a[1] := 2;
    a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
    t[n_, m_] := 2 + (-a[m] - a[n - m] + a[n]);
    Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]

Formula

a(n)=vector(a(n-1)).Reverse(vector(a(n-1));
a(0)=1;a(1)=2;\q t(n,m)=2+a(n)-a(m)-a(n-m)

A200756 Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.

Original entry on oeis.org

1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1, 2128, 2128, 1440, 752, 300, 84, 14, 1, 8544, 8544, 5872, 3200, 1400, 472, 112, 16, 1, 35008, 35008, 24336, 13664, 6352, 2400, 700, 144, 18, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 22 2011

Keywords

Comments

Triangle T(n,k) =
1. Riordan Array (1, (1 - sqrt(1 - 4*x - 4*x^2))/2) without first column.
2. Riordan Array ((1 - sqrt(1 - 4*x - 4*x^2))/(2*x), (1 - sqrt(1 - 4*x - 4*x^2))/2) numbering triangle (0,0).
The array factorizes in the Bell subgroup of the Riordan group as (1 + x, x*(1 + x)) * (c(x), x*c(x)) = A030528 * A033184, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Dec 11 2015

Examples

			    1,
    2,   1,
    4,   4,   1,
   12,  12,   6,   1,
   40,  40,  24,   8,  1,
  144, 144,  92,  40, 10,  1,
  544, 544, 360, 176, 60, 12, 1
		

Crossrefs

Cf. A025227 (column 1), A000108, A030528, A033184.

Programs

  • Mathematica
    Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
  • Maxima
    T(n,k):=k*(sum((binomial(i,n-i)*binomial(-k+2*i-1,i-1))/i,i,k,n));
    
  • PARI
    tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i),", ",);); print();); };
    tabl(10); \\ Indranil Ghosh, Mar 04 2017

Formula

T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );
Previous Showing 31-40 of 41 results. Next