A379173
G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^2.
Original entry on oeis.org
1, 3, 11, 53, 284, 1630, 9794, 60830, 387390, 2515892, 16599051, 110943779, 749603067, 5111606801, 35133394554, 243146923574, 1692918638012, 11850006727400, 83341778073920, 588646472669454, 4173607638548291, 29694593381322531, 211941668053441490, 1517087043428034420
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-k+1, k)*binomial(3*n-3*k+1, n-k)/(n-k+1));
A052727
Expansion of e.g.f. 1/2-1/2*(1-4*x-4*x^2)^(1/2).
Original entry on oeis.org
0, 1, 4, 24, 288, 4800, 103680, 2741760, 85800960, 3100446720, 127037030400, 5819550105600, 294727768473600, 16350861400473600, 986127353590579200, 64238655955009536000, 4495021381191204864000, 336249161369543245824000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Prod(S,S),S=Union(B,Z,C),C=Prod(Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[1/2-1/2*(1-4*x-4*x^2)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
A068765
Generalized Catalan numbers 3*x*A(x)^2 -A(x) +1 -2*x = 0.
Original entry on oeis.org
1, 1, 6, 39, 270, 1962, 14796, 114831, 911574, 7368894, 60457428, 502162902, 4214515212, 35686162548, 304491863448, 2615468845311, 22598114065254, 196269877811574, 1712578870493316, 15005719955119698
Offset: 0
-
CoefficientList[Series[(1-Sqrt[1-12*x*(1-2*x)])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
A176703
Coefficients of a recursive polynomial based on Chaitin's S expressions: a(0)=1; a(1)=x; a(2)=1; a(n)=vector(a(n-1)).reverse(a(n-1)).
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 0, 1, 4, 2, 2, 9, 8, 4, 2, 22, 24, 14, 8, 56, 70, 52, 24, 5, 146, 208, 176, 84, 30, 388, 624, 574, 320, 120, 14, 1048, 1876, 1868, 1184, 470, 112, 2869, 5648, 6088, 4236, 1900, 560, 42, 7942, 17040, 19804, 14928, 7560, 2492, 420, 22192, 51526, 64232
Offset: 0
{1},
{0, 1},
{1, 0},
{2, 0, 1},
{4, 2, 2},
{9, 8, 4, 2},
{22, 24, 14, 8},
{56, 70, 52, 24, 5},
{146, 208, 176, 84, 30},
{388, 624, 574, 320, 120, 14},
{1048, 1876, 1868, 1184, 470, 112},
{2869, 5648, 6088, 4236, 1900, 560, 42},
{7942, 17040, 19804, 14928, 7560, 2492, 420},
{22192, 51526, 64232, 52208, 29190, 10864, 2520, 132},
{62510, 156128, 207808, 181320, 110260, 46256, 12684, 1584},
{177308, 473952, 670966, 625408, 410400, 190932, 59976, 11088, 429}
- G. J. Chaitin, Algorithmic Information Theory, Cambridge Press, 1987, page 169
-
a[0] := 1; a[1] := x; a[2] = 1;
a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
Table[ CoefficientList[a[n], x], {n, 0, 15}];
Flatten[%]
-
{T(n, k) = if( 2*k-1 > n, 0, polcoeff( polcoeff( ( 1 - sqrt( (1 - 2*x)^2 - 4*x^2 * (x + y - 2*x*y) + x^2*O(x^n))) / (2*x), n), k))} /* Michael Somos, Jan 09 2012 */
A290147
Expansion of (1-sqrt(1-8*x-8*x^2))/(4*x).
Original entry on oeis.org
1, 3, 12, 66, 408, 2712, 18912, 136488, 1010784, 7637664, 58650240, 456377664, 3590674176, 28516332288, 228297907200, 1840515987072, 14929020470784, 121749590032896, 997676696045568, 8210704762960896, 67835018440593408, 562407734010335232, 4677727530446635008
Offset: 0
-
f:= gfun:-rectoproc({8*n*a(n)+(12+8*n)*a(1+n)+(-3-n)*a(n+2), a(0) = 1, a(1) = 3},a(n),remember):
map(f, [$0..50]); # Robert Israel, Jul 21 2017
-
CoefficientList[Series[(1-Sqrt[1-8x-8x^2])/(4x),{x,0,30}],x] (* Harvey P. Dale, Feb 10 2018 *)
-
my(x='x+O('x^99)); Vec((1-sqrt(1-8*x-8*x^2))/(4*x)) \\ Altug Alkan, Jul 22 2017
-
my(y=x+O(x)); for(n=1,23,y=x+x^2+2*y^2); Vec(y) \\ Robert Munafo, Oct 17 2024
A337991
Triangle read by rows: T(n,m) = Sum_{i=1..n} C(n,i-m)*C(n+m-i,i-1)*C(n+m-i,m)/n, with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 5, 4, 1, 4, 13, 15, 7, 1, 9, 35, 52, 36, 11, 1, 21, 96, 175, 160, 75, 16, 1, 51, 267, 576, 655, 415, 141, 22, 1, 127, 750, 1869, 2541, 2030, 952, 245, 29, 1, 323, 2123, 6000, 9492, 9156, 5488, 1988, 400, 37, 1, 835, 6046, 19107, 34476, 38976, 28476, 13356, 3852, 621, 46, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
2, 5, 4, 1;
4, 13, 15, 7, 1;
9, 35, 52, 36, 11, 1;
21, 96, 175, 160, 75, 16, 1;
51, 267, 576, 655, 415, 141, 22, 1;
...
-
B:=Binomial;
A337991:= func< n,k | n eq 0 select 1 else (1/n)*(&+[B(n, j-k)*B(n+k-j, j-1)*B(n+k-j, k): j in [1..n]]) >;
[A337991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 31 2024
-
T[0, 0] = 1; T[n_, m_] := Sum[Binomial[n, i - m] * Binomial[n + m - i, i - 1] * Binomial[n + m - i, m]/n, {i, 1, n}]; Table[T[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Amiram Eldar, Oct 06 2020 *)
-
T(n,m):=if m=n then 1 else if n=0 then 0 else sum(binomial(n,i-m)*binomial(n+m-i,i-1)*binomial(n+m-i,m),i,1,n)/n;
-
def A337991(n,k):
b=binomial
if n==0: return 1
else: return (1/n)*sum(b(n, j-k)*b(n+k-j, j-1)*b(n+k-j, k) for j in range(1,n+1))
# SageMath
flatten([[A337991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 31 2024
A381937
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));
A381940
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 2, 7, 51, 440, 4170, 41921, 438972, 4736281, 52286520, 587774685, 6705201456, 77426676892, 903251324476, 10629495065550, 126032922655030, 1504194199010435, 18056321542477095, 217859030049153565, 2640609137351540510, 32137554969392230950, 392580762083089376630
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(k+1, n-k)/(5*k+1));
A176698
A symmetrical sum triangle sequence:a(n)=vector(a(n-1)).Reverse(vector(a(n-1));a(0)=1;a(1)=2;t(n,m)=2+a(n)-a(m)-a(n-m).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 8, 8, 1, 1, 28, 34, 28, 1, 1, 104, 130, 130, 104, 1, 1, 400, 502, 522, 502, 400, 1, 1, 1584, 1982, 2078, 2078, 1982, 1584, 1, 1, 6416, 7998, 8390, 8466, 8390, 7998, 6416, 1, 1, 26464, 32878, 34454, 34826, 34826, 34454, 32878, 26464, 1, 1
Offset: 0
{1},
{1, 1},
{1, 2, 1},
{1, 8, 8, 1},
{1, 28, 34, 28, 1},
{1, 104, 130, 130, 104, 1},
{1, 400, 502, 522, 502, 400, 1},
{1, 1584, 1982, 2078, 2078, 1982, 1584, 1},
{1, 6416, 7998, 8390, 8466, 8390, 7998, 6416, 1},
{1, 26464, 32878, 34454, 34826, 34826, 34454, 32878, 26464, 1},
{1, 110784, 137246, 143654, 145210, 145506, 145210, 143654, 137246, 110784, 1}
-
a[0] := 1; a[1] := 2;
a[n_] := a[n] = Table[a[i], {i, 0, n - 1}].Table[a[n - 1 - i], {i, 0, n - 1}];
t[n_, m_] := 2 + (-a[m] - a[n - m] + a[n]);
Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]
A200756
Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.
Original entry on oeis.org
1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1, 2128, 2128, 1440, 752, 300, 84, 14, 1, 8544, 8544, 5872, 3200, 1400, 472, 112, 16, 1, 35008, 35008, 24336, 13664, 6352, 2400, 700, 144, 18, 1
Offset: 1
1,
2, 1,
4, 4, 1,
12, 12, 6, 1,
40, 40, 24, 8, 1,
144, 144, 92, 40, 10, 1,
544, 544, 360, 176, 60, 12, 1
-
Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
-
T(n,k):=k*(sum((binomial(i,n-i)*binomial(-k+2*i-1,i-1))/i,i,k,n));
-
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i),", ",);); print();); };
tabl(10); \\ Indranil Ghosh, Mar 04 2017
Comments