A068769
Generalized Catalan numbers 7*x*A(x)^2 -A(x) +1 -6*x=0.
Original entry on oeis.org
1, 1, 14, 203, 3038, 46746, 736764, 11853051, 194053622, 3224557406, 54265836548, 923218762270, 15854602773100, 274500192707860, 4786546243533432, 83989334625037947, 1481965556616225702
Offset: 0
-
a[0] = 1; a[1] = 1; a[2] = 14; a[n_] := (168 (2 - n) a[n - 2] + 14 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
CoefficientList[Series[(1-Sqrt[1-28*x*(1-6*x)])/(14*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
A068770
Generalized Catalan numbers 8*x*A(x)^2 -A(x) +1 -7*x=0.
Original entry on oeis.org
1, 1, 16, 264, 4480, 77952, 1386496, 25135616, 463233024, 8658673664, 163829383168, 3132565553152, 60446638866432, 1175715287400448, 23028562592268288, 453848132868898816, 8993594212565909504
Offset: 0
-
CoefficientList[Series[(1-Sqrt[1-32*x*(1-7*x)])/(16*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
-
a(n) = if(n, (4^(n-1)*14^(1/2*n+1/2)*pollegendre(n+1,2/7*14^(1/2)) - pollegendre(n,2/7*14^(1/2))*4^n*14^(n/2))\/n, 1) \\ Charles R Greathouse IV, Mar 19 2017
A068771
Generalized Catalan numbers 9*x*A(x)^2 -A(x) +1 -8*x=0.
Original entry on oeis.org
1, 1, 18, 333, 6318, 122634, 2429028, 48974949, 1002875094, 20814628158, 437088964860, 9272342710962, 198456435657036, 4280758166952756, 92972201833888200, 2031520673763657621, 44630859892110807654
Offset: 0
-
a[n_] := (288 (2 - n) a[n - 2] + 18 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}](* Wesley Ivan Hurt, Mar 04 2014 *)
CoefficientList[Series[(1-Sqrt[1-36*x*(1-8*x)])/(18*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
A254632
Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0
[ 1]
[ 4, 2]
[ 16, 16, 5]
[ 64, 96, 60, 14]
[ 256, 512, 480, 224, 42]
[1024, 2560, 3200, 2240, 840, 132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
-
h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
-
T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
-
A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1)
for n in range(7): [A254632(n,k) for k in (0..n)]
A103970
Expansion of (1 - sqrt(1 - 4*x - 12*x^2))/(2*x).
Original entry on oeis.org
1, 4, 8, 32, 128, 576, 2688, 13056, 65024, 330752, 1710080, 8962048, 47497216, 254132224, 1370849280, 7447117824, 40707293184, 223731253248, 1235630948352, 6853893292032, 38166664839168, 213288826699776, 1195775593807872, 6723691157127168, 37908469021409280, 214260335517892608, 1213784937073737728, 6890689428042285056
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( (1-Sqrt(1-4*x-12*x^2))/(2*x) )); // G. C. Greubel, Mar 16 2019
-
n:=30:a(0):=1:a(1):=4: k:=1: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
taylor(((1-(1-4*z-12*z^2)^0.5)/(2*z)),z=0,32); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1 - Sqrt[1-4x-12x^2])/(2x), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 18 2017 *)
-
my(x='x+O('x^35)); Vec((1-sqrt(1-4*x-12*x^2))/(2*x)) \\ G. C. Greubel, Mar 16 2019
-
((1-sqrt(1-4*x-12*x^2))/(2*x)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 16 2019
A103971
Expansion of (1 - sqrt(1 - 4*x - 16*x^2))/(2*x).
Original entry on oeis.org
1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380
Offset: 0
-
n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x),{x,0,30}],x] (* Harvey P. Dale, Apr 02 2012 *)
A103972
Expansion of (1-sqrt(1-4*x-20*x^2))/(2*x).
Original entry on oeis.org
1, 6, 12, 60, 264, 1392, 7392, 41424, 236640, 1384512, 8224896, 49554816, 301884672, 1856878080, 11514915840, 71915838720, 451938731520, 2855705994240, 18132621772800, 115637702461440, 740356410961920, 4756888756101120, 30662391191715840, 198229520200704000, 1285001080928845824
Offset: 0
-
n:=30:a(0):=1:a(1):=6 :for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
-
CoefficientList[Series[(1-Sqrt[1-4*x-20*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
-
x='x+O('x^66); Vec((1-sqrt(1-4*x-20*x^2))/(2*x)) \\ Joerg Arndt, May 13 2013
A349532
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - 4 * x).
Original entry on oeis.org
1, 1, 7, 52, 407, 3329, 28232, 246552, 2204895, 20103027, 186223399, 1748009560, 16591329652, 158975004204, 1535725632552, 14940742412112, 146259921123407, 1439658075118967, 14240062489572485, 141469058343614452, 1410975387252602527, 14122900638031585153
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x]^3/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = 4 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
Table[Sum[Binomial[n - 1, k - 1] Binomial[3 k, k] 4^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 21}]
A218186
Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 1).
Original entry on oeis.org
0, 0, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924, 69812926066668044, 523072984217339304, 3929809142578361938, 29598511892723647860
Offset: 0
-
my(x='x+O('x^30)); concat([0,0], Vec((1-6*x-sqrt((1-4*x)*(1-8*x)))/2)) \\ Michel Marcus, Oct 21 2020
Comments