cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A068769 Generalized Catalan numbers 7*x*A(x)^2 -A(x) +1 -6*x=0.

Original entry on oeis.org

1, 1, 14, 203, 3038, 46746, 736764, 11853051, 194053622, 3224557406, 54265836548, 923218762270, 15854602773100, 274500192707860, 4786546243533432, 83989334625037947, 1481965556616225702
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(7,7; n)/7 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 14; a[n_] := (168 (2 - n) a[n - 2] + 14 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-28*x*(1-6*x)])/(14*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (7^n) * p(n, -6/7) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 7*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-28*x*(1-6*x)))/(14*x).
Recurrence: (n+1)*a(n) = 168*(2-n)*a(n-2) + 14*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(14+14*sqrt(7)) * (14+2*sqrt(7))^n / (14*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068770 Generalized Catalan numbers 8*x*A(x)^2 -A(x) +1 -7*x=0.

Original entry on oeis.org

1, 1, 16, 264, 4480, 77952, 1386496, 25135616, 463233024, 8658673664, 163829383168, 3132565553152, 60446638866432, 1175715287400448, 23028562592268288, 453848132868898816, 8993594212565909504
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(8,8; n)/8 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-32*x*(1-7*x)])/(16*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    a(n) = if(n, (4^(n-1)*14^(1/2*n+1/2)*pollegendre(n+1,2/7*14^(1/2)) - pollegendre(n,2/7*14^(1/2))*4^n*14^(n/2))\/n, 1) \\ Charles R Greathouse IV, Mar 19 2017

Formula

a(n) = (8^n) * p(n, -7/8) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 8*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-32*x*(1-7*x)))/(16*x).
a(n) = (4^(n-1)*14^(1/2*n+1/2)*LegendreP(n+1,2/7*14^(1/2)) - LegendreP(n,2/7*14^(1/2))*4^n*14^(1/2*n))/n for n > 0. - Mark van Hoeij, Apr 23 2010
Recurrence: (n+1)*a(n) = 224*(2-n)*a(n-2) + 16*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(1+2*sqrt(2)) * (16+4*sqrt(2))^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068771 Generalized Catalan numbers 9*x*A(x)^2 -A(x) +1 -8*x=0.

Original entry on oeis.org

1, 1, 18, 333, 6318, 122634, 2429028, 48974949, 1002875094, 20814628158, 437088964860, 9272342710962, 198456435657036, 4280758166952756, 92972201833888200, 2031520673763657621, 44630859892110807654
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (288 (2 - n) a[n - 2] + 18 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}](* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-36*x*(1-8*x)])/(18*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (9^n) * p(n, -8/9) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 9*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-36*x*(1-8*x)))/(18*x).
Recurrence: (n+1)*a(n) = 288*(2-n)*a(n-2) + 18*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(2) * 24^n / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A254632 Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0

Views

Author

Peter Luschny, Feb 03 2015

Keywords

Examples

			[   1]
[   4,     2]
[  16,    16,     5]
[  64,    96,    60,    14]
[ 256,   512,   480,   224,    42]
[1024,  2560,  3200,  2240,   840,  132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
		

Crossrefs

Programs

  • Maple
    h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
    seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
  • Mathematica
    T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
  • Sage
    A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1)
    for n in range(7): [A254632(n,k) for k in (0..n)]

Formula

T(n,0) = A000302(n).
T(n,n) = A000108(n+1).
T(n,1) = A002699(n) for n>=1.
T(n,n-1) = A128650(n+2) for n>=1.
T(2*n,n) = A254633(n).
T(n,k) = 4^(n-k)*C(n,k)*Catalan(k+1).
sum(k=0..n, T(n,k)) = A025230(n+2).

A103970 Expansion of (1 - sqrt(1 - 4*x - 12*x^2))/(2*x).

Original entry on oeis.org

1, 4, 8, 32, 128, 576, 2688, 13056, 65024, 330752, 1710080, 8962048, 47497216, 254132224, 1370849280, 7447117824, 40707293184, 223731253248, 1235630948352, 6853893292032, 38166664839168, 213288826699776, 1195775593807872, 6723691157127168, 37908469021409280, 214260335517892608, 1213784937073737728, 6890689428042285056
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+3x)g(x(1+3x)). In general, the image of the Catalan numbers under the mapping g(x) -> (1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)*C(k)*C(k+1,n-k).
Hankel transform is 4^C(n+1,2)*A128018(n). [Paul Barry, Nov 20 2009]
By following L. Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we also obtain (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. In the present case, we also have the asymptotic result: a(n) ~ sqrt(4/3)*2^(n-1)*3^(n+1)/sqrt(Pi*n^3) for large n. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( (1-Sqrt(1-4*x-12*x^2))/(2*x) )); // G. C. Greubel, Mar 16 2019
    
  • Maple
    n:=30:a(0):=1:a(1):=4: k:=1: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
    taylor(((1-(1-4*z-12*z^2)^0.5)/(2*z)),z=0,32); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1-4x-12x^2])/(2x), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 18 2017 *)
  • PARI
    my(x='x+O('x^35)); Vec((1-sqrt(1-4*x-12*x^2))/(2*x)) \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    ((1-sqrt(1-4*x-12*x^2))/(2*x)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Mar 16 2019

Formula

G.f.: (1 - sqrt(1-4*x*(1+3*x)))/(2*x).
a(n) = Sum_{k=0..n} 3^(n-k)*C(k)*C(k+1, n-k).
D-finite with recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 12*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009

A103971 Expansion of (1 - sqrt(1 - 4*x - 16*x^2))/(2*x).

Original entry on oeis.org

1, 5, 10, 45, 190, 930, 4660, 24445, 131190, 719830, 4013260, 22684370, 129661740, 748252580, 4353379560, 25508284445, 150392391590, 891549228430, 5310994644060, 31775749689670, 190860711108740, 1150473009844380
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x) -> (1+4x)g(x(1+4x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n) = Sum_{k=0..n} i^(n-k)C(k)C(k+1,n-k).
More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1) = sum(C(k)*C(n-k),k=0..n) has the following g.f. f: f(z) = (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n) - 2*a*(2*n-1)*C(n-1) + 4*(n-2)*(a^2-b)*C(n-2) = 0. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Maple
    n:=30:a(0):=1:a(1):=5: for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x-16x^2])/(2x),{x,0,30}],x] (* Harvey P. Dale, Apr 02 2012 *)

Formula

G.f.: (1-sqrt(1-4*x*(1+4*x)))/(2*x).
a(n) = Sum_{k=0..n} 4^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(10 + 2*sqrt(5))*(2 + 2*sqrt(5))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Equivalently, a(n) ~ 5^(1/4) * 2^(2*n) * phi^(n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021

A103972 Expansion of (1-sqrt(1-4*x-20*x^2))/(2*x).

Original entry on oeis.org

1, 6, 12, 60, 264, 1392, 7392, 41424, 236640, 1384512, 8224896, 49554816, 301884672, 1856878080, 11514915840, 71915838720, 451938731520, 2855705994240, 18132621772800, 115637702461440, 740356410961920, 4756888756101120, 30662391191715840, 198229520200704000, 1285001080928845824
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Comments

Image of c(x), the g.f. of the Catalan numbers A000108 under the mapping g(x)->(1+5x)g(x(1+5x)). In general, the image of the Catalan numbers under the mapping g(x)->(1+i*x)g(x(1+i*x)) is given by a(n)=sum{k=0..n, i^(n-k)C(k)C(k+1,n-k)}.
More generally, the sequence C for which C(0)=a, C(1)=b and C(n+1)=sum(C(k)*C(n-k),k=0..n) has the following G.f f: f(z)= (1-sqrt(1-4*z*(a-(a^2-b)*z)))/(2*z). We obtain: C(n)=(sum(-1)^(p-1)*2^{n-p}a^{n-2*p-1}*(a^2-b)^p*((2*n-2*p-1)*...*5*3*1/(p!*(n-2*p+1)!)),p=0..floor((n+1)/2)). By following L. Comtet [Analyse Combinatoire Tomes 1 et 2, PUF, Paris 1970], we obtain also: (n+1)*C(n)-2*a*(2*n-1)*C(n-1)+4*(n-2)*(a^2-b)*C(n-2)=0. - Richard Choulet, Dec 17 2009

Crossrefs

Programs

  • Maple
    n:=30:a(0):=1:a(1):=6 :for k from 1 to n do a(k+1):=sum('a(p)*a(k-p)','p'=0..k):od:seq(a(k),k=0..n); # Richard Choulet, Dec 17 2009
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x-20*x^2])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-sqrt(1-4*x-20*x^2))/(2*x)) \\ Joerg Arndt, May 13 2013

Formula

G.f.: (1-sqrt(1-4*x*(1+5*x)))/(2*x).
a(n) = Sum_{k=0..n} 5^(n-k)*C(k)*C(k+1, n-k).
Another recurrence formula: (n+1)*a(n)=2*(2n-1)*a(n-1)+20*(n-2)*a(n-2). - Richard Choulet, Dec 17 2009
a(n) ~ sqrt(12+2*sqrt(6))*(2+2*sqrt(6))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012

A349532 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - 4 * x).

Original entry on oeis.org

1, 1, 7, 52, 407, 3329, 28232, 246552, 2204895, 20103027, 186223399, 1748009560, 16591329652, 158975004204, 1535725632552, 14940742412112, 146259921123407, 1439658075118967, 14240062489572485, 141469058343614452, 1410975387252602527, 14122900638031585153
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2021

Keywords

Comments

In general, if k >= 0 and g.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - k*x), then a(n) ~ (4*k + 27)^(n + 1/2) / (3 * sqrt(Pi) * n^(3/2) * 4^(n+1)). - Vaclav Kotesovec, Nov 25 2021

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x]^3/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = 4 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 21}]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[3 k, k] 4^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 21}]

Formula

a(0) = a(1) = 1; a(n) = 4 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(3*k,k) * 4^(n-k) / (2*k+1).
a(n) = 4^(n-1)*F([4/3, 5/3, 1-n], [2, 5/2], -3^3/2^4), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 21 2021
a(n) ~ 43^(n + 1/2) / (3 * sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Nov 25 2021

A218186 Number of rows with the value true in the truth tables of all bracketed formulas with n distinct propositions p_1, ..., p_n connected by the binary connective of m-implication (case 1).

Original entry on oeis.org

0, 0, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924, 69812926066668044, 523072984217339304, 3929809142578361938, 29598511892723647860
Offset: 0

Views

Author

N. J. A. Sloane, Oct 23 2012

Keywords

Crossrefs

Essentially the same as A025230.

Programs

  • PARI
    my(x='x+O('x^30)); concat([0,0], Vec((1-6*x-sqrt((1-4*x)*(1-8*x)))/2)) \\ Michel Marcus, Oct 21 2020

Formula

Yildiz gives a g.f.
G.f.: (1-6*x-sqrt((1-4*x)*(1-8*x)))/2. - Michel Marcus, Oct 21 2020
D-finite with recurrence n*a(n) +(n+5)*a(n-1) +(n+44)*a(n-2) +(n+331)*a(n-3) +10*(-902*n+3859)*a(n-4) +34720*(n-6)*a(n-5)=0. - R. J. Mathar, Nov 22 2023

Extensions

a(6) corrected by Georg Fischer, Jun 07 2021
Previous Showing 11-19 of 19 results.