cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A026528 a(n) = T(2*n-1, n-1), T given by A026519.

Original entry on oeis.org

1, 2, 8, 28, 111, 436, 1763, 7176, 29521, 122182, 508595, 2126312, 8923136, 37563930, 158563368, 670893296, 2844444761, 12081753410, 51400091942, 218990735668, 934228356445, 3990177231742, 17060699906541, 73017457810032, 312785412844736, 1340988707637776, 5753539499846507
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-1] ];
    Table[a[n], {n,40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n-1,n-1) for n in (1..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n-1, n-1).
a(n) = A026552(2*n-1, n-1).

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021

A026529 a(n) = T(2*n-1, n-2), where T is given by A026519.

Original entry on oeis.org

1, 3, 13, 50, 205, 833, 3437, 14232, 59301, 248050, 1041469, 4385888, 18519306, 78376403, 332370925, 1412000824, 6008104249, 25601113893, 109229104313, 466577280830, 1995120743749, 8539562784258, 36583756253885, 156854365793800, 673028595199000, 2889847430222961, 12416501973954798, 53381063233213198
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-2] ];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 20 2021 *)
  • Maxima
    a(n):=sum(binomial(n-1,i-1)*sum(binomial(j,n-j+2*i)*binomial(n,j),j,0,n),i,1,n/2); /* Vladimir Kruchinin, Jan 16 2015 */
    
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    [T(2*n-1,n-2) for n in (2..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = A026519(2*n-1, n-2).
a(n) = A026552(2*n-1, n-2).
a(n) = Sum_{i=0..floor(n/2)} C(n-1, i-1)*Sum_{j=0..n} C(j, n-j+2*i)*C(n, j). - Vladimir Kruchinin, Jan 16 2015

Extensions

Terms a(20) onward added by G. C. Greubel, Dec 20 2021

A026531 a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026519.

Original entry on oeis.org

1, 2, 4, 11, 22, 64, 127, 376, 746, 2222, 4414, 13180, 26215, 78373, 156041, 466840, 930194, 2784266, 5550976, 16620976, 33152042, 99291358, 198115526, 593484440, 1184511095, 3548969075, 7084871668, 21230215328, 42390336619
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n - 1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, j], {j,0,n}] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k) for k in (0..n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = Sum_{j=0..n} A026519(n, j).

A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ...

Original entry on oeis.org

1, 3, 6, 18, 36, 108, 216, 648, 1296, 3888, 7776, 23328, 46656, 139968, 279936, 839808, 1679616, 5038848, 10077696, 30233088, 60466176, 181398528, 362797056, 1088391168, 2176782336, 6530347008, 13060694016, 39182082048, 78364164096, 235092492288, 470184984576
Offset: 1

Views

Author

Keywords

Comments

Preface the series with a 1: (1, 1, 3, 6, 18, 36, ...); then the next term in the series = (1, 1, 3, 6, ...) dot (1, 2, 1, 2, ...). Example: 36 = (1, 1, 3, 6, 18) dot (1, 2, 1, 2, 1) = (1 + 2 + 3 + 12 + 18). - Gary W. Adamson, Apr 18 2009
Partial products of A176059. - Reinhard Zumkeller, Apr 04 2012

Crossrefs

Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences.

Programs

  • Haskell
    a026532 n = a026532_list !! (n-1)
    a026532_list = scanl (*) 1 $ a176059_list
    -- Reinhard Zumkeller, Apr 04 2012
    
  • Magma
    [(1/4)*(3-(-1)^n)*6^Floor(n/2) : n in [1..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Mathematica
    FoldList[(2 + Boole[EvenQ@ #2]) #1 &, Range@ 28] (* or *)
    CoefficientList[Series[x*(1+3x)/(1-6x^2), {x,0,31}], x] (* Michael De Vlieger, Aug 02 2017 *)
    LinearRecurrence[{0,6},{1,3},30] (* Harvey P. Dale, Jul 11 2018 *)
  • PARI
    a(n)=if(n%2,3,1)*6^(n\2) \\ Charles R Greathouse IV, Jul 02 2013
    
  • Python
    def a(n): return (3 if n%2 else 1)*6**(n//2)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 02 2017
    
  • Sage
    [(1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) for n in (1..30)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = T(n, 0) + T(n, 1) + ... + T(n, 2n-2), T given by A026519.
From Benoit Cloitre, Nov 14 2003: (Start)
a(n) = (1/2)*(5+(-1)^n)*a(n-1) for n>1, a(1) = 1.
a(n) = (1/4)*(3-(-1)^n)*6^floor(n/2). (End)
From Ralf Stephan, Feb 03 2004: (Start)
G.f.: x*(1+3*x)/(1-6*x^2).
a(n+2) = 6*a(n). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)). - G. C. Greubel, Dec 21 2021
Sum_{n>=1} 1/a(n) = 8/5. - Amiram Eldar, Feb 13 2023

Extensions

New definition from Ralf Stephan, Dec 01 2004
Offset changed from 0 to 1 by Vincenzo Librandi, Jun 08 2011

A027262 a(n) = self-convolution of row n of array T given by A026519.

Original entry on oeis.org

1, 3, 8, 58, 196, 1608, 5774, 48924, 180772, 1553940, 5837908, 50618184, 192239854, 1676640462, 6416509142, 56201554888, 216309089956, 1900789437276, 7347943049432, 64734185205960, 251119894730596, 2216888144737508, 8624336421678788, 76265067399850848, 297394187356638766
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n,k]*T[n,2*n-k], {k,0,2*n}] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,2*n-k) for k in (0..2*n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 22 2021

Formula

a(n) = Sum_{k=0..2*n} A026519(n, k)*A026519(n, 2*n-k).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027263 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A026519.

Original entry on oeis.org

2, 6, 52, 180, 1516, 5502, 46936, 174456, 1504432, 5673140, 49288856, 187675644, 1639174304, 6284986554, 55108565584, 212408191568, 1868067054968, 7229648901024, 63734526307552, 247468885359240, 2185849699156352, 8510025522045036, 75288454939134992, 293772371437293720
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+1], {k, 0, 2*n-1}] ];
    Table[a[n], {n, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+1) for k in (0..2*n-1) )
    [a(n) for n in (1..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-1} A026519(n,k) * A026519(n,k+1).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027264 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A026519.

Original entry on oeis.org

5, 40, 150, 1279, 4797, 41462, 156900, 1365014, 5205950, 45501743, 174609162, 1531614109, 5906040623, 51952990090, 201114700568, 1773182087440, 6885880226784, 60825762159338, 236826459554380, 2095280066101886, 8175978023317170, 72432026278468535, 283166067626865540
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+2], {k, 0, 2*n-2}] ];
    Table[a[n], {n, 2, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+2) for k in (0..2*n-2) )
    [a(n) for n in (2..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-2} A026519(n,k) * A026519(n,k+2).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027265 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A026519.

Original entry on oeis.org

24, 104, 954, 3786, 33648, 131264, 1159844, 4508580, 39809076, 154773696, 1367463642, 5323519838, 47082494816, 183586707648, 1625447736120, 6348284151024, 56265306436584, 220081449149440, 1952476424575980, 7647723960962932, 67907006619888744, 266322435212031984
Offset: 3

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}] ];
    Table[a[n], {n, 3, 40}] (* G. C. Greubel, Dec 21 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum( T(n,k)*T(n,k+3) for k in (0..2*n-3) )
    [a(n) for n in (3..40)] # G. C. Greubel, Dec 21 2021

Formula

a(n) = Sum_{k=0..2n-3} A026519(n,k) * A026519(n,k+3).

Extensions

More terms from Sean A. Irvine, Oct 26 2019

A027266 a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).

Original entry on oeis.org

1, 6, 18, 72, 180, 648, 1512, 5184, 11664, 38880, 85536, 279936, 606528, 1959552, 4199040, 13436928, 28553472, 90699264, 191476224, 604661760, 1269789696, 3990767616, 8344332288, 26121388032, 54419558400, 169789022208
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,6,18,72]; [n le 4 select I[n] else 12*(Self(n-2) - 3*Self(n-4)): n in [1..41]]; // G. C. Greubel, Dec 21 2021
    
  • Mathematica
    CoefficientList[Series[(1+6x+6x^2)/(1-6x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{0,12,0,-36},{1,6,18,72},30] (* Harvey P. Dale, Jun 19 2015 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -36,0,12,0]^n*[1;6;18;72])[1,1] \\ Charles R Greathouse IV, Oct 18 2022
  • Sage
    [((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ) for n in (0..40)] # G. C. Greubel, Dec 21 2021
    

Formula

a(n) = Sum_{k=0..2n} (k+1) * A026519(n, k).
G.f.: (1+6*x+6*x^2)/(1-6*x^2)^2.
a(n) = 12*a(n-2) - 36*a(n-4), with a(0)=1, a(1)=6, a(2)=18, a(3)=72. - Harvey P. Dale, Jun 19 2015
a(n) = ((n+1)/2)*6^((n-1)/2)*( 3*(1-(-1)^n) + sqrt(6)*(1+(-1)^n) ). - G. C. Greubel, Dec 21 2021

A026533 a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A026519.

Original entry on oeis.org

1, 3, 7, 18, 40, 104, 231, 607, 1353, 3575, 7989, 21169, 47384, 125757, 281798, 748638, 1678832, 4463098, 10014074, 26635050, 59787092, 159078450, 357193976, 950678416, 2135189511, 5684158586, 12769030254, 33999245582
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
    a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, Sum[T[i,j], {i,0,n}, {j,0,i}] ];
    Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 20 2021 *)
  • Sage
    @CachedFunction
    def T(n,k): # T = A026519
        if (k<0 or k>2*n): return 0
        elif (k==0 or k==2*n): return 1
        elif (k==1 or k==2*n-1): return (n+1)//2
        elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
        else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
    @CachedFunction
    def a(n): return sum(sum( T(i,j) for j in (0..i)) for i in (0..n) )
    [a(n) for n in (0..40)] # G. C. Greubel, Dec 20 2021

Formula

a(n) = Sum_{i=0..n} Sum_{j=0..i} A026519(i,j).
Previous Showing 11-20 of 20 results.