cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A027217 a(n) = Sum_{k=0..n-2} T(n,k)*T(n,k+2), T given by A026736.

Original entry on oeis.org

1, 6, 32, 136, 640, 2593, 11860, 47532, 215531, 861334, 3893621, 15549166, 70199065, 280316029, 1264697307, 5050617474, 22776900816, 90972831448, 410117333080
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([2..20], n-> Sum([0..n-2], k-> T(n, k)*T(n,k+2) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+2], {k, 0, n-2}], {n, 2, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n++; sum(k=0, n-2, T(n, k)*T(n,k+2)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,k+2) for k in (0..n-2)) for n in (2..30)] # G. C. Greubel, Jul 19 2019
    

A027218 a(n) = Sum_{k=0..n-3} T(n,k)*T(n,k+3), T given by A026736.

Original entry on oeis.org

1, 9, 51, 279, 1277, 6235, 26789, 125370, 525082, 2409886, 9969722, 45289767, 186105280, 840402559, 3439358196, 15472942142, 63155131233, 283400162019
Offset: 3

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([3..20], n-> Sum([0..n-3], k-> T(n, k)*T(n,k+3) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[T[n,k]*T[n,k+3], {k, 0, n-3}], {n, 3, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    for(n=3,20, print1(sum(k=0, n-3, T(n, k)*T(n,k+3)), ", ")) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)*T(n,k+3) for k in (0..n-3)) for n in (3..30)] # G. C. Greubel, Jul 19 2019
    

A027219 a(n) = Sum_{k=0..n} (k+1) * A026736(n,k).

Original entry on oeis.org

1, 3, 8, 20, 50, 117, 283, 639, 1512, 3338, 7774, 16898, 38884, 83566, 190488, 405848, 918120, 1942813, 4367665, 9191499, 20555546, 43061789, 95874233, 200083005, 443770612, 923124007, 2040635445, 4233080627, 9330343290
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([0..n], k-> (k+1)*T(n, k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[(k+1)*T[n,k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n--; sum(k=0, n, (k+1)*T(n, k)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum((k+1)*T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 19 2019
    

A027220 a(n) = Sum_{k=0..n} (k+1) * A026736(n,n-k).

Original entry on oeis.org

1, 3, 8, 20, 52, 121, 301, 675, 1628, 3570, 8426, 18202, 42288, 90374, 207464, 439800, 1000194, 2106961, 4755715, 9967599, 22359788, 46670273, 104154703, 216643945, 481381746, 998346275, 2210037191, 4571884119, 10088030640
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[(k+1)*T[n,n-k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum((k+1)*T(n,n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 19 2019

A027221 Sum of squares of numbers in row n of array T given by A026736.

Original entry on oeis.org

1, 2, 6, 20, 79, 284, 1237, 4542, 20626, 76406, 354080, 1317964, 6173634, 23051344, 108628550, 406513364, 1922354351, 7206349304, 34147706833, 128187589014, 608151037123, 2285559568866, 10850577045131, 40817923301712, 193850277807569, 729825857819924, 3466587141136257
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..21], n-> Sum([0..n], k-> T(n, k)^2 )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k]^2, {k,0,n}], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(21, n, n--; sum(k=0, n, T(n, k)^2 ) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k)^2 for k in (0..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
    

A027214 a(n) = greatest number in row n of array T given by A026736.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 43, 94, 173, 398, 707, 1680, 2917, 7085, 12111, 29877, 50503, 126021, 211263, 531751, 885831, 2244627, 3720995, 9478605, 15652239, 40040183, 65913927, 169193597, 277822147, 715143046, 1171853635, 3023492646
Offset: 0

Views

Author

Keywords

A026671 Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).

Original entry on oeis.org

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027
Offset: 0

Views

Author

Keywords

Comments

1, 1, 3, 11, 43, 173, ... is the unique sequence for which both the Hankel transform of the sequence itself and the Hankel transform of its left shift are the powers of 2 (A000079). For example, det[{{1, 1, 3}, {1, 3, 11}, {3, 11, 43}}] = det[{{1, 3, 11}, {3, 11, 43}, {11, 43, 173}}] = 4. - David Callan, Mar 30 2007
From Paul Barry, Jan 25 2009: (Start)
a(n) is the image of F(2n+2) under the Catalan matrix (1,xc(x)) where c(x) is the g.f. of A000108.
The sequence 1,1,3,... is the image of A001519 under (1,xc(x)). This sequence has g.f. given by 1/(1-x-2x^2/(1-3x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). (End)
Binomial transform of A111961. - Philippe Deléham, Feb 11 2009
From Paul Barry, Nov 03 2010: (Start)
The sequence 1,1,3,... has g.f. 1/(1-x/sqrt(1-4x)), INVERT transform of A000984.
It is an eigensequence of the sequence array for A000984. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

a(n) = T(2n-1, n-1), T given by A026736.
a(n) = T(2n, n), T given by A026670.
a(n) = T(2n+1, n+1), T given by A026725.
Row sums of triangle A054335.

Programs

  • GAP
    a:=[3,11,43];; for n in [4..30] do a[n]:=(2*(4*n-3)*a[n-1] - 3*(5*n-8)*a[n-2] - 2*(2*n-3)*a[n-3])/n; od; Concatenation([1], a); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]-x),{x,0,n}],{n,0,30}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/(sqrt(1 -4*x +x*O(x^n)) -x), n))} /* Michael Somos, Apr 20 2007 */
    
  • PARI
    my(x='x+O('x^66)); Vec( 1/(sqrt(1-4*x)-x) ) \\ Joerg Arndt, May 04 2013
    
  • Sage
    (1/(sqrt(1-4*x)-x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Wolfdieter Lang, Mar 21 2000: (Start)
G.f.: 1/(sqrt(1-4*x)-x).
a(n) = Sum_{i=1..n} a(i-1)*binomial(2*(n-i), n-i) + binomial(2*n, n), n >= 1, a(0)=1. (End)
G.f.: 1/(1 -x -2*x*c(x)) where c(x) = g.f. for Catalan numbers A000108. - Michael Somos, Apr 20 2007
From Paul Barry, Jan 25 2009: (Start)
G.f.: 1/(1 - 3xc(x) + x^2*c(x)^2);
G.f.: 1/(1-3x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction).
a(0) = 1, a(n) = Sum_{k=0..n} (k/(2n-k))*C(2n-k,n-k)*F(2k+2). (End)
a(n) = Sum_{k=0..n} A039599(n,k) * A000045(k+2). - Philippe Deléham, Feb 11 2009
From Paul Barry, Feb 08 2009: (Start)
G.f.: 1/(1-x/(1-2x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction);
G.f. of 1,1,3,... is 1/(1-x-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = the infinite square production matrix:
3, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
From Vaclav Kotesovec, Oct 08 2012: (Start)
D-finite with recurrence: n*a(n) = 2*(4*n-3)*a(n-1) - 3*(5*n-8)*a(n-2) - 2*(2*n-3)*a(n-3).
a(n) ~ (2+sqrt(5))^n/sqrt(5). (End)
a(n) = Sum_{k=0..n+1} 4^(n+1-k) * binomial(n-k/2,n+1-k). - Seiichi Manyama, Mar 30 2025
From Peter Luschny, Mar 30 2025: (Start)
a(n) = 4^n*(binomial(n-1/2, n)*hypergeom([1, (1-n)/2, -n/2], [1/2, 1/2-n], -1/4) + hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4)/4) for n > 0.
a(n) = A001076(n) + A176280(n). (End)

A111279 Number of permutations avoiding the patterns {3241,3421,4321}; number of weak sorting class based on 3241.

Original entry on oeis.org

1, 1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841, 193850277807569, 819669810565949
Offset: 0

Views

Author

Len Smiley, Nov 01 2005

Keywords

Comments

Is this the same sequence as A026737? - Andrew S. Plewe, May 09 2007
Yes, see the Callan reference "A bijection...". - Joerg Arndt, Feb 29 2016
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>3, 1>4, 3>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the third element is larger than the second element. - Sergey Kitaev, Dec 10 2020

Examples

			a(4) = 21 since the top row terms of M^3 = (11, 6, 3, 1, 0, 0, 0, ...)
		

Programs

  • Mathematica
    Rest[ CoefficientList[ Series[(3 - 13x + 2x^2 + (5x - 1)*Sqrt[1 - 4x])/(2*(1 - 4x - x^2)), {x, 0, 24}], x]] (* Robert G. Wilson v, Nov 04 2005 *)

Formula

O.g.f.: (3-13*x+2*x^2+(5*x-1)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the sum of top row terms of M^(n-1), M is an infinite square production matrix with powers of 2 as the left border as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 1, 1, 1, 0, ...
8, 1, 1, 1, 1, ...
... (End)
The top rows of these matrix powers, 1; 1,1; 3,2,1; 11,6,3,1; 43,21,10,4,1; appear also as columns in A026736. - R. J. Mathar, Nov 15 2011
D-finite with recurrence n*a(n) + (16-13*n)*a(n-1)+(55*n-134)*a(n-2) + (264-71*n)*a(n-3) + 10*(7-2*n)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
Shorter recurrence: n*(n+5)*a(n) = 2*(4*n^2 + 17*n - 30)*a(n-1) - 3*(5*n^2 + 17*n - 80)*a(n-2) - 2*(n+6)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (5/2-11/10*sqrt(5))*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 18 2012

Extensions

More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020

A026673 a(n) = T(2n,n-2), T given by A026670.

Original entry on oeis.org

1, 7, 37, 177, 808, 3596, 15764, 68446, 295294, 1268356, 5430734, 23199304, 98933705, 421352919, 1792709561, 7621345733, 32380443643, 137504761035, 583684770103, 2476836131227, 10507517431481, 44566369523517, 188988331406117
Offset: 2

Views

Author

Keywords

Comments

Also a(n) = T(2n,n-2) = T(2n+1,n+2), T given by A026725.
Also a(n) = T(2n,n-2), T given by A026736.
Column k=6 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(  (1-Sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^6/(8*x^2*(8*x^2-(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^6/(8*x^2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (x^2*C(x)^6)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
-(n+2)*(3*n-7)*a(n) +2*(12*n^2-19*n-16)*a(n-1) +5*(-9*n^2+27*n-22)*a(n-2) -2*(3*n-4)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 26 2019

A026676 a(n) = T(n, floor(n/2)), T given by A026670.

Original entry on oeis.org

1, 1, 3, 4, 11, 16, 43, 65, 173, 267, 707, 1105, 2917, 4597, 12111, 19196, 50503, 80380, 211263, 337284, 885831, 1417582, 3720995, 5965622, 15652239, 25130844, 65913927, 105954110, 277822147, 447015744, 1171853635, 1886996681
Offset: 0

Views

Author

Keywords

Comments

Also a(n) = T(n,m) + T(n,m+1) + ... + T(n,n), m=[ (n+1)/2 ], T given by A026736.

Crossrefs

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([Int((n+1)/2)..n], k-> T(n, k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[k==n-1, n, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n, k], {k, Floor[(n+1)/2], n}], {n, 0, 40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n--; sum(k=(n+1)\2, n, T(n, k)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (k==n-1): return n
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n,k) for k in (floor((n+1)/2)..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
    
Previous Showing 21-30 of 30 results.