A372588
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.
Original entry on oeis.org
2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,2,3,4} 15 (3,2)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{1,3,5} 21 (4,2)
{4,5} 24 (2,1,1,1)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{3,4,6} 44 (5,1,1)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066208,
A160786,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372586
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{2} 2 (1)
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,2,3,4} 15 (3,2)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{3,6} 36 (2,2,1,1)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
{2,3,4,6} 46 (9,1)
{1,2,3,4,6} 47 (15)
{5,6} 48 (2,1,1,1,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]
A372589
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.
Original entry on oeis.org
3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,2,6} 35 (4,3)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
{1,2,3,6} 39 (6,2)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066207,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372590
Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
Original entry on oeis.org
1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{3,4} 12 (2,1,1)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{2,5} 18 (2,2,1)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{1,2,6} 35 (4,3)
{2,3,6} 38 (8,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372587
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
Original entry on oeis.org
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{4,5} 24 (2,1,1,1)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{1,2,6} 35 (4,3)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
A026832
Number of partitions of n into distinct parts, the least being odd.
Original entry on oeis.org
0, 1, 0, 2, 1, 2, 2, 4, 4, 5, 6, 8, 10, 12, 14, 18, 21, 24, 30, 36, 42, 50, 58, 68, 80, 93, 108, 126, 146, 168, 194, 224, 256, 294, 336, 384, 439, 500, 568, 646, 732, 828, 938, 1060, 1194, 1348, 1516, 1704, 1916, 2149, 2408, 2698, 3018, 3372, 3766, 4202, 4682
Offset: 0
a(7)=4 because we have [7], [6,1], [4,3] and [4,2,1].
- N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 56, Eq. (26.28).
-
a026832 n = p 1 n where
p _ 0 = 1
p k m = if m < k then 0 else p (k+1) (m-k) + p (k+1+0^(n-m)) m
-- Reinhard Zumkeller, Jun 14 2012
-
g:=sum(x^(2*k-1)*product(1+x^j, j=2*k..60), k=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..53); # Emeric Deutsch, Mar 29 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(i*(i+1)/2 `if`(n=0, 0, b(n$2)):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 01 2019
-
mx=53; Rest[CoefficientList[Series[Sum[x^(2*k-1) Product[1+x^j, {j, 2*k, mx}], {k, mx}], {x, 0, mx}], x]] (* Jean-François Alcover, Apr 05 2011, after Emeric Deutsch *)
Join[{0},Table[Length[Select[IntegerPartitions[n],OddQ[#[[-1]]]&&Max[Tally[#][[All,2]]] == 1&]],{n,60}]] (* Harvey P. Dale, May 14 2022 *)
A349150
Heinz numbers of integer partitions with at most one odd part.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 23, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 57, 58, 59, 61, 63, 65, 67, 69, 71, 73, 74, 77, 78, 79, 81, 83, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109
Offset: 1
The terms and their prime indices begin:
1: {} 23: {9} 49: {4,4}
2: {1} 26: {1,6} 51: {2,7}
3: {2} 27: {2,2,2} 53: {16}
5: {3} 29: {10} 54: {1,2,2,2}
6: {1,2} 31: {11} 57: {2,8}
7: {4} 33: {2,5} 58: {1,10}
9: {2,2} 35: {3,4} 59: {17}
11: {5} 37: {12} 61: {18}
13: {6} 38: {1,8} 63: {2,2,4}
14: {1,4} 39: {2,6} 65: {3,6}
15: {2,3} 41: {13} 67: {19}
17: {7} 42: {1,2,4} 69: {2,9}
18: {1,2,2} 43: {14} 71: {20}
19: {8} 45: {2,2,3} 73: {21}
21: {2,4} 47: {15} 74: {1,12}
These are the positions of 0's and 1's in
A257991.
The conjugate partitions are ranked by
A349151.
A122111 is a representation of partition conjugation.
A300063 ranks partitions of odd numbers, counted by
A058695 up to 0's.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A345958 ranks partitions with alternating sum 1.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000290,
A000700,
A001222,
A027187,
A027193,
A028260,
A035363,
A047993,
A215366,
A257992,
A277579,
A326841.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[Reverse[primeMS[#]],_?OddQ]<=1&]
A103419
Number of compositions of n in which the least part is odd.
Original entry on oeis.org
1, 1, 4, 6, 14, 28, 59, 117, 239, 484, 980, 1973, 3973, 7989, 16054, 32227, 64653, 129628, 259787, 520440, 1042305, 2086938, 4177680, 8361557, 16733221, 33482909, 66992641, 134028938, 268128902, 536373288, 1072934271, 2146173471, 4292842170, 8586488355
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, irem(i, 2), add(
(t-> b(t, min(i, j, `if`(t>0, t, j))))(n-j), j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 26 2015
-
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n - 1)/((1 - x - x^(2n))*(1 - x - x^(2n - 1))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
A103420
Number of compositions of n in which the least part is even.
Original entry on oeis.org
0, 1, 0, 2, 2, 4, 5, 11, 17, 28, 44, 75, 123, 203, 330, 541, 883, 1444, 2357, 3848, 6271, 10214, 16624, 27051, 43995, 71523, 116223, 188790, 306554, 497624, 807553, 1310177, 2125126, 3446237, 5587517, 9057611, 14680337, 23789891, 38546834, 62449682, 101163024
Offset: 1
-
N:= 50: # for a(1) .. a(N)
G:= add(x^(2*n)/((1-x)^n*(1+x^n)),n=1..N/2):
S:= series(G,x,N+1):
[seq(coeff(S,x,i),i=1..N)]; # Robert Israel, Oct 23 2024
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1-
irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
end:
a:= n-> b(n, infinity):
seq(a(n), n=1..42); # Alois P. Heinz, Oct 23 2024
-
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
A103422
Number of compositions of n in which the greatest part is even.
Original entry on oeis.org
0, 1, 2, 5, 9, 18, 34, 66, 127, 249, 490, 972, 1936, 3874, 7772, 15623, 31439, 63308, 127506, 256782, 516970, 1040340, 2092450, 4206146, 8449953, 16965459, 34042784, 68272206, 136847328, 274168858, 549042730, 1099050180, 2199222960
Offset: 1
-
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - 2x + x^(2n))*(1 - 2x + x^(2n + 1))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
Comments