cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A121895 Number of partitions of n into 4 summands a>=b>=c>=d>0 with integer a/b, b/c and c/d.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 4, 2, 5, 4, 6, 4, 7, 5, 10, 5, 8, 6, 11, 8, 13, 6, 12, 7, 13, 9, 15, 8, 16, 10, 17, 10, 14, 10, 20, 11, 14, 10, 23, 10, 22, 12, 21, 15, 20, 8, 21, 12, 23, 18, 24, 11, 20, 15, 30, 18, 21, 8, 28, 14, 21, 18, 32, 16, 34, 16, 22, 15, 28, 14, 33, 14, 22, 20, 31, 18, 32, 15
Offset: 1

Views

Author

Zak Seidov, Sep 01 2006

Keywords

Examples

			a(36)=20 because there are 20 partitions of 36 in 4 summands a>=b>=c>=d>0 with integer a/b, b/c and c/d:
{33, 1, 1, 1}, {32, 2, 1, 1}, {30, 2, 2, 2}, {28, 4, 2, 2}, {27, 3, 3, 3}, {25, 5, 5, 1}, {24, 8, 2, 2}, {24, 6, 3, 3}, {24, 4, 4, 4}, {21, 7, 7, 1}, {20, 10, 5, 1}, {18, 6, 6, 6}, {17, 17, 1, 1}, {16, 16, 2, 2}, {16, 8, 8, 4}, {15, 15, 5, 1}, {15, 15, 3, 3}, {14, 14, 7, 1}, {12, 12, 6, 6}, {9, 9, 9, 9}.
		

Crossrefs

Cf. A026810 = number of partitions of n into exactly 4 parts.
Column 4 of A122934.

Formula

a(n) = Sum_{d|n, d>1} A122935(d-1). - Franklin T. Adams-Watters, Sep 20 2006

A321306 The number of connected weighted cubic graphs with weight n on 6 vertices.

Original entry on oeis.org

2, 2, 7, 12, 26, 41, 76, 113, 183, 264, 393, 543, 768, 1024, 1385, 1801, 2355, 2989, 3811, 4740, 5911, 7234, 8857, 10680, 12883, 15336, 18254, 21496, 25293, 29491, 34361, 39713, 45860, 52598, 60260, 68627, 78079, 88354, 99882, 112385, 126316, 141379, 158082, 176080
Offset: 6

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

Each vertex of the 2 simple cubic graphs is assigned an integer number (weight) >=1. The weight of the graph is the sum of the weights of the vertices.
The cycle indices of the permutation group of vertex permutations of the two cubic graphs on 6 vertices are ( +t[1]^6 +3*t[1]^2*t[2]^2 +2*t[3]^2 +4*t[2]^3 +2*t[6])/12 and +( +t[1]^6 +6*t[1]^4*t[2] +9*t[1]^2*t[2]^2 +4*t[1]^3*t[3] +12*t[1]*t[2]*t[3] +6*t[2]^3 +18*t[2]*t[4] +12*t[6] +4*t[3]^2)/72 . The ordinary generating function of the sequence is obtained by adding the two cycle indices and setting t[i] -> x^i/(1-x^i).

Examples

			a(6)=2 because there are 2 cubic graphs (see A002851), and if the weight is the same as the number of vertices, there is one case for each.
		

Crossrefs

Cf. A026810 (4 vertices), A321307 (8 vertices), A005513.

Formula

G.f.: (x^10 +3*x^8 -x^7 +4*x^6 +4*x^4 +3*x^2 -2*x+2) *x^6/((-1+x)^6 *(1+x)^3 *(1+x^2) *(x^2+x+1)^2 *(x^2-x+1)).

Extensions

Terms a(36) and beyond from Andrew Howroyd, Apr 27 2020

A371973 a(n) is the number of distinct areas > 0 of triangles with integer sides and perimeter n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 13, 19, 14, 21, 19, 23, 20, 27, 23, 30, 27, 32, 29, 35, 32, 39, 34, 44, 39, 48, 43, 52, 47, 55, 51, 60, 53, 63, 59, 69, 58, 74, 67, 78, 73, 84, 75, 90, 81, 92, 88, 101, 91, 108, 93, 112, 106
Offset: 3

Views

Author

Hugo Pfoertner, Apr 16 2024

Keywords

Crossrefs

See the formula section for the relationships with A026810, A070083, A135622 (which has many crossrefs related to areas of triangles).

Programs

  • PARI
    A2(a,b,c) = {my (s=(a+b+c)/2); s*(s-a)*(s-b)*(s-c)};
    a371973(n) = {my (A=List()); forpart (v=n, listput(A, A2(v[1],v[2],v[3])), [1,(n-1)\2], [3,3]); #Set(A)};
    
  • Python
    def A371973(n): return len(set((2*(b+c)-n)*(n-2*b)*(n-2*c) for c in range((n+2)//3, (n+1)//2) for b in range((n-c+1)//2, c+1))) # David Radcliffe, Aug 01 2025

Formula

a(n) = |{A135622(k) : A070083(k) = n}| = |{A135622(k) : A026810(n) < k <= A026810(n+1)}|. - Peter Munn, Jul 29 2025

Extensions

b-file corrected by David Radcliffe, Aug 01 2025

A026924 Number of partitions of n into an odd number of parts, the greatest being 4; also, a(n+7) = number of partitions of n+3 into an even number of parts, each <=4.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 3, 5, 5, 8, 8, 12, 13, 18, 19, 24, 26, 33, 35, 43, 46, 55, 59, 69, 74, 86, 91, 104, 111, 126, 134, 150, 159, 177, 187, 207, 219, 241, 254, 277, 292, 318, 334, 362, 380, 410, 430, 462, 484, 519, 542, 579, 605
Offset: 1

Views

Author

Keywords

Crossrefs

4th column of A026920.

Programs

  • Maple
    A026924 := proc(n)
        local a,p1,p2,p3,p4 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                for p3 from op(1+modp(n-p1-2*p2,4),[0,3,2,1]) to (n-p1-2*p2)/3 by 4 do
                    p4 := (n-p1-2*p2-3*p3)/4 ;
                    if type(p4,'integer') and p4 >=1 and type(p1+p2+p3+p4,'odd') then
                        a := a+1 ;
                    end if:
                end do:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026928(n) = A026810(n). - R. J. Mathar, Aug 22 2019

A340571 Number of partitions of n into 4 parts with at least one even part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 3, 6, 6, 11, 10, 18, 17, 27, 25, 39, 36, 54, 49, 72, 66, 94, 85, 120, 109, 150, 135, 185, 167, 225, 202, 270, 243, 321, 287, 378, 339, 441, 394, 511, 457, 588, 524, 672, 600, 764, 680, 864, 770, 972, 864, 1089, 969, 1215, 1079, 1350, 1200, 1495, 1326
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 11 2021

Keywords

Examples

			a(5) = 1; [2,1,1,1];
a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1];
a(9) = 6; [6,1,1,1], [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1], [3,2,2,2].
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[1 - Mod[k, 2] Mod[j, 2] Mod[i, 2] Mod[n - i - k - j, 2], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (1 - (k mod 2) * (j mod 2) * (i mod 2) * ((n-i-j-k) mod 2)).
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( ((k+1) mod 2) + ((j+1) mod 2) + ((i+1) mod 2) + ((n-i-j-k+1) mod 2) ).

A321307 The number of connected weighted cubic graphs with weight n on 8 vertices.

Original entry on oeis.org

5, 10, 41, 98, 257, 537, 1131, 2116, 3893, 6665, 11177, 17867, 28011, 42419, 63145, 91586, 130870, 183230, 253265, 344373, 463073, 614332, 807138, 1048517, 1350574, 1722948, 2181614, 2739523, 3417356, 4232137
Offset: 8

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

Each vertex of the 5 simple cubic graphs is assigned an integer number (weight) >=1. The weight of the graph is the sum of the weights of the vertices.

Examples

			a(8)=5 because there are 5 cubic graphs (see A002851), and if the weight is the same as the number of vertices, there is one case for each.
		

Crossrefs

Cf. A026810 (4 vertices), A321306 (6 vertices).

Formula

G.f.: x^8*(x^18 +10*x^16 +5*x^15 +37*x^14 +8*x^13 +75*x^12 +16*x^11 +103*x^10 +16*x^9 +108*x^8 +13*x^7 +86*x^6 +3*x^5 +50*x^ 4+21*x^2 -5*x +5)/((-1+x)^8* (1+x)^4 *(x^2+x+1)^2 *(x^2-x+1) *(1+x^2)^2 *(1+x^4)).

A321379 Number of ways to write n as n = a*b*c*d with 1 < a <= b <= c <= d < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Seiichi Manyama, Nov 08 2018

Keywords

Comments

This sequence is different from A101638.
If p is prime, a(p^k) = A026810(k). - Robert Israel, Nov 08 2018

Examples

			16 = 2*2*2*2. So a(16) = 1.
24 = 2*2*2*3. So a(24) = 1.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for a from 2 to floor(N^(1/4)) do
      for b from a to floor((N/a)^(1/3)) do
        for c from b to floor((N/a/b)^(1/2)) do
          for d from c to N/(a*b*c) do
            V[a*b*c*d]:= V[a*b*c*d]+1
    od od od od:
    convert(V,list); # Robert Israel, Nov 08 2018

A340572 Number of partitions of n into 4 parts with at least one prime part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 2, 5, 5, 8, 10, 13, 16, 21, 24, 31, 35, 41, 49, 57, 64, 75, 84, 95, 107, 119, 133, 147, 164, 179, 198, 215, 236, 256, 281, 300, 329, 349, 382, 407, 441, 465, 506, 531, 575, 603, 652, 681, 733, 765, 822, 853, 919, 952, 1019, 1057, 1128, 1166, 1247, 1284
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; series(
         `if`(n=0, t, `if`(i<1, 0, expand(x*b(n-i, min(n-i, i),
         `if`(isprime(i), 1, t)))+b(n, i-1, t))), x, 5)
        end:
    a:= n-> coeff(b(n$2, 0), x, 4):
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 24 2021
  • Mathematica
    Table[Sum[Sum[Sum[Sign[(PrimePi[k] - PrimePi[k - 1]) + (PrimePi[j] - PrimePi[j - 1]) + (PrimePi[i] - PrimePi[i - 1]) + (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1])], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign( c(k) + c(j) + c(i) + c(n-i-j-k) ), where c is the prime characteristic (A010051).

A340589 Number of partitions of n into 4 parts with at least one odd part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 11, 13, 18, 20, 27, 29, 39, 41, 54, 55, 72, 73, 94, 93, 120, 118, 150, 146, 185, 179, 225, 215, 270, 258, 321, 304, 378, 357, 441, 414, 511, 479, 588, 548, 672, 626, 764, 708, 864, 800, 972, 897, 1089, 1004, 1215, 1116, 1350, 1240, 1495
Offset: 0

Views

Author

Wesley Ivan Hurt, Jan 12 2021

Keywords

Examples

			a(7) = 3; [4,1,1,1], [3,2,1,1], [2,2,2,1].
a(8) = 4; [5,1,1,1], [4,2,1,1], [3,3,1,1], [3,2,2,1], (not [2,2,2,2]).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sign[Mod[k, 2] + Mod[j, 2] + Mod[i, 2] + Mod[n - i - j - k, 2]], {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

Formula

a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} sign((k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k) mod 2)).

A382864 Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 4, 3, 0, 1, 4, 4, 1, 0, 1, 5, 5, 1, 0, 1, 5, 7, 2, 0, 1, 6, 8, 3, 0, 1, 6, 10, 5, 0, 1, 7, 12, 6, 1, 0, 1, 7, 14, 9, 1, 0, 1, 8, 16, 11, 2, 0, 1, 8, 19, 15, 3, 0, 1, 9, 21, 18, 5, 0, 1, 9, 24, 23, 7
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2025

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2,  1;
  0, 1, 3,  1;
  0, 1, 3,  2;
  0, 1, 4,  3;
  0, 1, 4,  4, 1;
  0, 1, 5,  5, 1;
  0, 1, 5,  7, 2;
  0, 1, 6,  8, 3;
  0, 1, 6, 10, 5;
  0, 1, 7, 12, 6, 1;
  ...
		

Crossrefs

Row sums give A000009.
Columns 0..10 give A000007, A000012, A004526(n-1), A069905(n-3), A026810(n-6), A026811(n-10), A026812(n-15), A026813(n-21), A026814(n-28), A026815(n-36), A026816(n-45).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-x^j).
T(n,k) = |A292047(n,k)| = |A292049(n,k)|.
Previous Showing 31-40 of 41 results. Next