cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A027046 a(n) = Sum_{k=0..n} T(n,k) * T(n,n+k), with T given by A027023.

Original entry on oeis.org

1, 2, 5, 16, 65, 286, 1305, 6232, 30377, 150178, 750937, 3785904, 19215865, 98086646, 503087741, 2591128000, 13394476993, 69466312210, 361315132065, 1884242109256, 9849626540337, 51599350440694, 270851460356973
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(add(T(n,k)*T(n,n+k), k=0..n), n=0..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k]*T[n,n+k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n, k)*T(n,n+k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 04 2019

A027047 a(n) = Sum_{k=0..2n-1} T(n,k) * T(n,k+1), with T given by A027023.

Original entry on oeis.org

2, 8, 50, 336, 2418, 18088, 138850, 1086016, 8617122, 69159896, 560290322, 4574820624, 37603654098, 310873702392, 2582964183874, 21556333188288, 180609299685954, 1518572497996568, 12808849866774002, 108351496132761104, 918964407713589618, 7812768025080427672
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(add(T(n,k)*T(n,k+1), k=0..2*n-1), n=1..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k]*T[n,k+1], {k,0,2*n-1}], {n,1,30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+1) for k in (0..2*n-1)) for n in (1..30)] # G. C. Greubel, Nov 04 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027048 a(n) = Sum_{k=0..2n-2} T(n,k) * T(n,k+2), with T given by A027023.

Original entry on oeis.org

5, 29, 213, 1633, 12821, 102369, 826305, 6724933, 55108961, 454279229, 3764205941, 31334121045, 261903891425, 2197181330193, 18494163039793, 156140262436597, 1321876222268977, 11219183496737037, 95441562533950341, 813656964557564557, 6950294796825730249
Offset: 2

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(add(T(n,k)*T(n,k+2), k=0..2*n-2), n=2..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k]*T[n,k+2], {k,0,2*n-2}], {n,2,30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+2) for k in (0..2*n-2)) for n in (2..30)] # G. C. Greubel, Nov 04 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027049 a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A027023.

Original entry on oeis.org

16, 120, 952, 7848, 65580, 550476, 4631876, 39047764, 329784608, 2790469092, 23656401612, 200928615160, 1709781846028, 14575407966156, 124466311279620, 1064636218853556, 9120848372291680, 78256468639080460, 672393605270681188, 5785139333187494936, 49838058776228021388
Offset: 3

Views

Author

Keywords

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(add(T(n,k)*T(n,k+3), k=0..2*n-3), n=3..30); # G. C. Greubel, Nov 04 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j,3}]]; Table[Sum[T[n,k]*T[n,k+3], {k,0,2*n-3}], {n,3,30}] (* G. C. Greubel, Nov 04 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n,k)*T(n,k+3) for k in (0..2*n-3)) for n in (3..30)] # G. C. Greubel, Nov 04 2019

Extensions

More terms from Sean A. Irvine, Oct 22 2019

A027050 a(n) = T(n,2n-1), T given by A027023.

Original entry on oeis.org

1, 3, 5, 11, 25, 59, 145, 367, 949, 2495, 6645, 17883, 48541, 132711, 365073, 1009647, 2805365, 7827167, 21918997, 61584891, 173550677, 490408623, 1389206065, 3944231887, 11221911849, 31989733339, 91354992405, 261322661051
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-1), n=1..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-1], {n,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-1) for n in (1..30)] # G. C. Greubel, Nov 05 2019

Formula

Conjecture D-finite with recurrence (-n+1)*a(n) +3*(2*n-3)*a(n-1) +(-7*n+10)*a(n-2) +2*(-4*n+19)*a(n-3) +(5*n-23)*a(n-4) +(2*n-5)*a(n-5) +3*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A027051 a(n) = T(n,2n-2), T given by A027023.

Original entry on oeis.org

1, 5, 13, 33, 85, 221, 581, 1545, 4149, 11237, 30657, 84169, 232361, 644573, 1795717, 5021801, 14091829, 39665893, 111965785, 316857945, 898797441, 2555025821, 7277679961, 20767821489, 59365259065, 169967668645, 487356812589
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-2), n=2..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-2], {n,2,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-2) for n in (2..30)] # G. C. Greubel, Nov 05 2019

Formula

Conjecture: D-finite with recurrence n*a(n) +(-7*n+5)*a(n-1) +(13*n-18)*a(n-2) +(n-13)*a(n-3) +(-13*n+64)*a(n-4) +(3*n-25)*a(n-5) +(-n+2)*a(n-6) +3*(n-5)*a(n-7)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 5/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023

A027039 a(n) = greatest number in row n of array T given by A027023.

Original entry on oeis.org

1, 1, 3, 5, 13, 33, 85, 221, 597, 1655, 4593, 12775, 35629, 99651, 279501, 786071, 2252509, 6460433, 18542169, 53260481, 153115765, 440572993, 1268830877, 3657435745, 10551936125, 30469329025, 88056216233, 256521698097
Offset: 0

Views

Author

Keywords

A027907 Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1, 1, 8, 36, 112, 266
Offset: 0

Views

Author

Keywords

Comments

When the rows are centered about their midpoints, each term is the sum of the three terms directly above it (assuming the undefined terms in the previous row are zeros). - N. J. A. Sloane, Dec 23 2021
T(n,k) = number of integer strings s(0),...,s(n) such that s(0)=0, s(n)=k, s(i) = s(i-1) + c, where c is 0, 1 or 2. Columns of T include A002426, A005717 and A014531.
Also number of ordered trees having n+1 leaves, all at level three and n+k+3 edges. Example: T(3,5)=3 because we have three ordered trees with 4 leaves, all at level three and 11 edges: the root r has three children; from one of these children two paths of length two are hanging (i.e., 3 possibilities) while from each of the other two children one path of length two is hanging. Diagonal sums are the tribonacci numbers; more precisely: Sum_{i=0..floor(2*n/3)} T(n-i,i) = A000073(n+2). - Emeric Deutsch, Jan 03 2004
T(n,k) = A111808(n,k) for 0 <= k <= n and T(n, 2*n-k) = A111808(n,k) for 0 <= k < n. - Reinhard Zumkeller, Aug 17 2005
The trinomial coefficients, T(n,i), are the absolute value of the coefficients of the chromatic polynomial of P_2 X P_n factored with x*(x-1)^i terms. Example: The chromatic polynomial of P_2 X P_2 is: x*(x-1) - 2*x*(x-1)^2 + x*(x-1)^3 and so T(1,0)=1, T(1,1)=2 and T(1,1) = 1. - Thomas J. Pfaff (tpfaff(AT)ithaca.edu), Oct 02 2006
T(n,k) is the number of distinct ways in which k unlabeled objects can be distributed in n labeled urns allowing at most 2 objects to fall into each urn. - N-E. Fahssi, Mar 16 2008
T(n,k) is the number of compositions of k into n parts p, each part 0 <= p <= 2. Adding 1 to each part, as a corollary, T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3. E.g., T(2,3)=2 since 5 = 3+2 = 2+3. - Steffen Eger, Jun 10 2011
Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (1,2). - Joerg Arndt, Jul 05 2011
Number of lattice paths from (0,0) to (2*n-k,k) using steps (2,0), (1,1), (0,2). - Werner Schulte, Jan 25 2017
T(n,k) is number of distinct ways to sum the integers -1, 0 , and 1 n times to obtain n-k, where T(n,0) = T(n,2*n+1) = 1. - William Boyles, Apr 23 2017
T(n-1,k-1) is the number of 2-compositions of n with 0's having k parts; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
T(n,k) is the number of ways to obtain a sum of n+k when throwing a 3-sided die n times. Follows from the "T(n,k) is the number of compositions of n+k into n parts p where 1 <= p <= 3" comment above. - Feryal Alayont, Dec 30 2024

Examples

			The triangle T(n, k) begins:
  n\k 0   1   2   3   4   5   6   7   8   9 10 11 12
  0:  1
  1:  1   1   1
  2:  1   2   3   2   1
  3:  1   3   6   7   6   3   1
  4:  1   4  10  16  19  16  10   4   1
  5:  1   5  15  30  45  51  45  30  15   5  1
  6:  1   6  21  50  90 126 141 126  90  50 21  6  1
Concatenated rows:
G.f. = 1 + (x^2+x+1)*x + (x^2+x+1)^2*x^4 + (x^2+x+1)^3*x^9 + ...
     = 1 + (x + x^2 + x^3) + (x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8) +
  (x^9 + 3*x^10 + 6*x^11 + 7*x^12 + 6*x^13 + 3*x^14 + x^15) + ... .
As a centered triangle, this begins:
           1
        1  1  1
     1  2  3  2  1
  1  3  6  7  6  3  1
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
  • D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
  • L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43.

Crossrefs

Columns of T include A002426, A005717, A014531, A005581, A005712, etc. See also A035000, A008287.
First differences are in A025177. Pairwise sums are in A025564.

Programs

  • Haskell
    a027907 n k = a027907_tabf !! n !! k
    a027907_row n = a027907_tabf !! n
    a027907_tabf = [1] : iterate f [1, 1, 1] where
       f row = zipWith3 (((+) .) . (+))
                        (row ++ [0, 0]) ([0] ++ row ++ [0]) ([0, 0] ++ row)
    a027907_list = concat a027907_tabf
    -- Reinhard Zumkeller, Jul 06 2014, Jan 22 2013, Apr 02 2011
  • Maple
    A027907 := proc(n,k) expand((1+x+x^2)^n) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A027907(n,k),k=0..2*n),n=0..5) ; # R. J. Mathar, Jun 13 2011
    T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
  • Mathematica
    Table[CoefficientList[Series[(Sum[x^i, {i, 0, 2}])^n, {x, 0, 2 n}], x], {n, 0, 10}] // Grid (* Geoffrey Critzer, Mar 31 2010 *)
    Table[Sum[Binomial[n, i]Binomial[n - i, k - 2i], {i, 0, n}], {n, 0, 10}, {k, 0, 2n}] (* Adi Dani, May 07 2011 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ (1 + x + x^2)^n, x, k]]; (* Michael Somos, Nov 08 2016 *)
    Flatten[DeleteCases[#,0]&/@CellularAutomaton[{Total[#] &, {}, 1}, {{1}, 0}, 8] ] (* Giorgos Kalogeropoulos, Nov 09 2021 *)
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(trinomial(n,k),n,0,8,k,0,2*n); /* Emanuele Munarini, Mar 15 2011 */
    
  • Maxima
    create_list(ultraspherical(k,-n,-1/2),n,0,6,k,0,2*n); /* Emanuele Munarini, Oct 18 2016 */
    
  • PARI
    {T(n, k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; /* Michael Somos, Jun 27 2003 */
    

Formula

G.f.: 1/(1-z*(1+w+w^2)).
T(n,k) = Sum_{r=0..floor(k/3)} (-1)^r*binomial(n, r)*binomial(k-3*r+n-1, n-1).
Recurrence: T(0,0) = 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k-0), with T(n,k) = 0 if k < 0 or k > 2*n:
T(i,0) = T(i, 2*i) = 1 for i >= 0, T(i, 1) = T(i, 2*i-1) = i for i >= 1 and for i >= 2 and 2 <= j <= i-2, T(i, j) = T(i-1, j-2) + T(i-1, j-1) + T(i-1, j).
The row sums are powers of 3 (A000244). - Gerald McGarvey, Aug 14 2004
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2*i+n-k) * binomial(2*i+n-k, i). - Ralf Stephan, Jan 26 2005
T(n,k) = Sum_{j=0..n} binomial(n, j) * binomial(j, k-j). - Paul Barry, May 21 2005
T(n,k) = Sum_{j=0..n} binomial(k-j, j) * binomial(n, k-j). - Paul Barry, Nov 04 2005
From Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006: (Start)
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(2*n-2*j, k-j); (G. E. Andrews (1990)) obtained by expanding ((1+x)^2 - x)^n.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(n-j, k-2*j); obtained by expanding ((1+x) + x^2)^n.
T(n,k) = (-1)^k*Sum_{j=0..n} (-3)^j * binomial(n,j) * binomial(2*n-2*j, k-j); obtained by expanding ((1-x)^2 + 3*x)^n.
T(n,k) = (1/2)^k * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k-2*j); obtained by expanding ((1+x/2)^2 + (3/4)*x^2)^n.
T(n,k) = (2^k/4^n) * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k); obtained by expanding ((1/2+x)^2 + 3/4)^n using T(n,k) = T(2*n-k). (End)
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x+x^2)^n.
G.f.: A(x) = Sum_{n>=0} x^n*(1+x+x^2)^n * Product_{k=1..n} (1 - (1+x+x^2) * x^(4*k-3)) / (1 - (1+x+x^2)*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x+x^2)/(1 + x*(1-x^2)*(1+x+x^2)/(1 - x^5*(1+x+x^2)/(1 + x^3*(1-x^4)*(1+x+x^2)/(1 - x^9*(1+x+x^2)/(1 + x^5*(1-x^6)*(1+x+x^2)/(1 - x^13* (1+x+x^2)/(1 + x^7*(1-x^8)*(1+x+x^2)/(1 - ...))))))))), a continued fraction.
(End)
Triangle: G.f. = Sum_{n>=0} (1+x+x^2)^n * x^(n^2) * y^n. - Daniel Forgues, Mar 16 2015
From Peter Luschny, May 08 2016: (Start)
T(n+1,n)/(n+1) = A001006(n) (Motzkin) for n>=0.
T(n,k) = H(n, k) if k < n else H(n, 2*n-k) where H(n,k) = binomial(n,k)*hypergeom([(1-k)/2, -k/2], [n-k+1], 4).
T(n,k) = GegenbauerC(m, -n, -1/2) where m=k if k < n else 2*n-k. (End)
T(n,k) = (-1)^k * C(2*n,k) * hypergeom([-k, -(2*n-k)], [-n+1/2], 3/4), for all k with 0 <= k <= 2n. - Robert S. Maier, Jun 13 2023
T(n,n) = Sum_{k=0..2*n} (-1)^k*(T(n,k))^2 and T(2*n,2*n) = Sum_{k=0..2*n} (T(n,k))^2 for n >= 0. - Werner Schulte, Nov 08 2016
T(n,n) = A002426(n), central trinomial coefficients. - M. F. Hasler, Nov 02 2019
Sum_{k=0..n-1} T(n, 2*k) = (3^n-1)/2. - Tony Foster III, Oct 06 2020

A027052 Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0, T(n,1)=0 for n >= 1, T(n,2)=1 for n >= 2 and for n >= 3, T(n,k) = T(n-1,k-3) + T(n-1, k-2) + T(n-1,k-1) for 3 <= k <= 2n-1. T(n,k)=0 for k < 0 or k > 2n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 4, 1, 1, 0, 1, 2, 3, 6, 9, 8, 1, 1, 0, 1, 2, 3, 6, 11, 18, 23, 18, 1, 1, 0, 1, 2, 3, 6, 11, 20, 35, 52, 59, 42, 1, 1, 0, 1, 2, 3, 6, 11, 20, 37, 66, 107, 146, 153, 102, 1, 1, 0, 1, 2, 3, 6, 11, 20, 37, 68, 123, 210, 319, 406, 401, 256, 1
Offset: 0

Views

Author

Keywords

Comments

The following sequences all have the same parity: A004737, A006590, A027052, A071028, A071797, A078358, A078446. - Jeremy Gardiner, Mar 16 2003

Examples

			Triangle T(n,k) for 0 <= k <= 2n:
  1;
  1, 0, 1;
  1, 0, 1, 2, 1;
  1, 0, 1, 2, 3, 4, 1;
  1, 0, 1, 2, 3, 6, 9, 8, 1;
		

Crossrefs

Cf. A001590, a tribonacci sequence.
Cf. A160999 (row sums), A005408 (row lengths).
Diagonals T(n, n+c): A027053 (c=2), A027054 (c=3), A027055 (c=4).
Diagonals T(n, 2n-c): A027056 (c=1), A027058 (c=2), A027059 (c=3), A027060 (c=4), A027061(c=5), A027062 (c=6), A027063 (c=7), A027064 (c=8), A027065 (c=9), A027066 (c=10).
Other related sequences: A027057, A027071.
Other arrays of this type: A027023, A027082, A027113.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=2 or k=2*n then return 1;
        elif k=1 then return 0;
        else return Sum([1..3], j-> T(n-1, k-j) );
        fi;
      end;
    Flat(List([0..10], n-> List([0..2*n], k-> T(n,k) ))); # G. C. Greubel, Nov 05 2019
  • Maple
    T:= proc(n, k) option remember;
          if k=0 or k=2 or k=2*n then 1
        elif k=1 then 0
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(seq(T(n, k), k=0..2*n), n=0..10); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, k], {n, 0, 12}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    {T(n, k) = if(k==0 || k==2 || k==2*n, 1, if(k==1, 0, sum(j=1,3, T(n-1, k-j)) ))};
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==2 or k==2*n): return 1
        elif (k==1): return 0
        else: return sum(T(n-1, k-j) for j in (1..3))
    [[T(n, k) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Nov 05 2019
    

Formula

A001590(k+1) = T(n,k) if 0 <= k <= n. - Michael Somos, Jun 01 2014

Extensions

Offset and keyword:tabl corrected by R. J. Mathar, Jun 01 2009
Previous Showing 21-29 of 29 results.