cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 184 results. Next

A340784 Heinz numbers of even-length integer partitions of even numbers.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 39, 40, 46, 49, 55, 57, 62, 64, 81, 82, 84, 85, 87, 88, 90, 91, 94, 100, 111, 115, 118, 121, 129, 133, 134, 136, 144, 146, 155, 156, 159, 160, 166, 169, 183, 184, 187, 189, 194, 196, 198, 203, 205, 206, 210, 213, 218, 220
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are positive integers whose number of prime indices and sum of prime indices are both even, counting multiplicity in both cases.
A multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jul 28 2024

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()            57: (8,2)            118: (17,1)
      4: (1,1)         62: (11,1)           121: (5,5)
      9: (2,2)         64: (1,1,1,1,1,1)    129: (14,2)
     10: (3,1)         81: (2,2,2,2)        133: (8,4)
     16: (1,1,1,1)     82: (13,1)           134: (19,1)
     21: (4,2)         84: (4,2,1,1)        136: (7,1,1,1)
     22: (5,1)         85: (7,3)            144: (2,2,1,1,1,1)
     25: (3,3)         87: (10,2)           146: (21,1)
     34: (7,1)         88: (5,1,1,1)        155: (11,3)
     36: (2,2,1,1)     90: (3,2,2,1)        156: (6,2,1,1)
     39: (6,2)         91: (6,4)            159: (16,2)
     40: (3,1,1,1)     94: (15,1)           160: (3,1,1,1,1,1)
     46: (9,1)        100: (3,3,1,1)        166: (23,1)
     49: (4,4)        111: (12,2)           169: (6,6)
     55: (5,3)        115: (9,3)            183: (18,2)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of prime powers is A056798.
These partitions are counted by A236913.
The odd version is A160786 (A340931).
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.
A340601 counts partitions of even rank (A340602).
A340785 counts factorizations into even factors.
A340786 counts even-length factorizations into even factors.
Squares (A000290) is a subsequence.
Not a subsequence of A329609 (30 is the first term of A329609 not occurring here, and 210 is the first term here not present in A329609).
Positions of even terms in A373381.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[PrimeOmega[#]]&&EvenQ[Total[primeMS[#]]]&]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
    A353331(n) = ((!(bigomega(n)%2)) && (!(A056239(n)%2)));
    isA340784(n) = A353331(n); \\ Antti Karttunen, Apr 14 2022

Formula

Intersection of A028260 and A300061.

A350844 Number of strict integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 3, 4, 4, 7, 7, 8, 11, 12, 15, 18, 21, 23, 31, 32, 40, 45, 54, 59, 73, 78, 94, 106, 122, 136, 161, 177, 203, 231, 259, 293, 334, 372, 417, 476, 525, 592, 663, 742, 821, 931, 1020, 1147, 1271, 1416, 1558, 1752, 1916, 2137, 2357, 2613, 2867
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4   5    6     7    8     9     A      B     C
          21       32   51    43   62    54    73     65    84
                   41   321   52   71    63    82     74    93
                              61   521   72    91     83    A2
                                         81    541    92    B1
                                         432   721    A1    543
                                         621   4321   632   651
                                                      821   732
                                                            741
                                                            921
                                                            6321
		

Crossrefs

The version for no difference 0 is A000009.
The version for no difference > -2 is A001227, non-strict A034296.
The version for no difference -1 is A003114 (A325160).
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The opposite version is A072670.
The multiplicative version is A350840, non-strict A350837 (A350838).
The non-strict version is A350842.
A000041 counts integer partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length (A026424).
A116931 counts partitions with no difference -1 (A319630).
A323092 counts double-free integer partitions (A320340) strict A120641.
A325534 counts separable partitions (A335433).
A325535 counts inseparable partitions (A335448).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],0|-2]&]],{n,0,30}]

A152146 Triangle read by rows: T(n,k) (n >= 0, 0 <= k <= n) = number of partitions of 2n into 2k odd parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 0, 3, 5, 3, 2, 1, 1, 0, 4, 6, 5, 3, 2, 1, 1, 0, 4, 9, 7, 5, 3, 2, 1, 1, 0, 5, 11, 11, 7, 5, 3, 2, 1, 1, 0, 5, 15, 14, 11, 7, 5, 3, 2, 1, 1, 0, 6, 18, 20, 15, 11, 7, 5, 3, 2, 1, 1, 0, 6, 23, 26, 22, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Sep 25 2009, indices corrected Jul 09 2012

Keywords

Comments

In both this and A152157, reading columns downwards "converges" to A000041.
Also the number of strict integer partitions of 2n with alternating sum 2k. Also the number of normal integer partitions of 2n of which 2k parts are odd, where a partition is normal if it covers an initial interval of positive integers. - Gus Wiseman, Jun 20 2021

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  1   1
  0  2  2   1   1
  0  3  3   2   1   1
  0  3  5   3   2   1   1
  0  4  6   5   3   2   1  1
  0  4  9   7   5   3   2  1  1
  0  5 11  11   7   5   3  2  1  1
  0  5 15  14  11   7   5  3  2  1  1
  0  6 18  20  15  11   7  5  3  2  1  1
  0  6 23  26  22  15  11  7  5  3  2  1  1
  0  7 27  35  29  22  15 11  7  5  3  2  1  1
  0  7 34  44  40  30  22 15 11  7  5  3  2  1 1
  0  8 39  58  52  42  30 22 15 11  7  5  3  2 1 1
  0  8 47  71  70  55  42 30 22 15 11  7  5  3 2 1 1
  0  9 54  90  89  75  56 42 30 22 15 11  7  5 3 2 1 1
  0  9 64 110 116  97  77 56 42 30 22 15 11  7 5 3 2 1 1
  0 10 72 136 146 128 100 77 56 42 30 22 15 11 7 5 3 2 1 1
From _Gus Wiseman_, Jun 20 2021: (Start)
For example, row n = 6 counts the following partitions (B = 11):
  (75)  (3333)  (333111)  (33111111)  (3111111111)  (111111111111)
  (93)  (5331)  (531111)  (51111111)
  (B1)  (5511)  (711111)
        (7311)
        (9111)
The corresponding strict partitions are:
  (7,5)      (8,4)      (9,3)    (10,2)   (11,1)  (12)
  (6,5,1)    (5,4,3)    (7,3,2)  (9,2,1)
  (5,4,2,1)  (6,4,2)    (8,3,1)
             (7,4,1)
             (6,3,2,1)
The corresponding normal partitions are:
  43221    33321     3321111    321111111   21111111111  111111111111
  322221   332211    32211111   2211111111
  2222211  432111    222111111
           3222111
           22221111
(End)
		

Crossrefs

Cf. A035294 (row sums), A107379, A152140, A152157.
Column k = 1 is A004526.
Column k = 2-8 is A026810 - A026816.
The non-strict version is A239830.
The reverse non-strict version is A344610.
The reverse version is A344649
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-2)+`if`(i>n, 0, expand(sqrt(x)*b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(2*n, 2*n-1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Jun 21 2021
  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&ats[#]==k&]],{n,0,30,2},{k,0,n,2}] (* Gus Wiseman, Jun 20 2021 *)

Formula

T(n,k) = A152140(2n,2k).

A322353 Number of factorizations of n into distinct semiprimes; a(1) = 1 by convention.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 06 2018

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers. In the even case, these factorizations have A001222(n)/2 factors. - Gus Wiseman, Dec 31 2020
Records 1, 2, 3, 4, 5, 9, 13, 15, 17, ... occur at 1, 60, 210, 840, 1260, 4620, 27720, 30030, 69300, ...

Examples

			a(4) = 1, as there is just one way to factor 4 into distinct semiprimes, namely as {4}.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(n) factorizations for n = 60, 210, 840, 1260, 4620, 12600, 18480:
  4*15   6*35    4*6*35    4*9*35    4*15*77    4*6*15*35    4*6*10*77
  6*10   10*21   4*10*21   4*15*21   4*21*55    4*6*21*25    4*6*14*55
         14*15   4*14*15   6*10*21   4*33*35    4*9*10*35    4*6*22*35
                 6*10*14   6*14*15   6*10*77    4*9*14*25    4*10*14*33
                           9*10*14   6*14*55    4*10*15*21   4*10*21*22
                                     6*22*35    6*10*14*15   4*14*15*22
                                     10*14*33                6*10*14*22
                                     10*21*22
                                     14*15*22
(End)
		

Crossrefs

Unlabeled multiset partitions of this type are counted by A007717.
The version for partitions is A112020, or A101048 without distinctness.
The non-strict version is A320655.
Positions of zeros include A320892.
Positions of nonzero terms are A320912.
The case of squarefree factors is A339661, or A320656 without distinctness.
Allowing prime factors gives A339839, or A320732 without distinctness.
A322661 counts loop-graphs, ranked by A320461.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A037143 lists primes and semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes.
A339846 counts even-length factorizations, with ordered version A174725.

Programs

Formula

a(n) = Sum_{d|n} (-1)^A001222(d) * A339839(n/d). - Gus Wiseman, Dec 31 2020

A340785 Number of factorizations of 2n into even factors > 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 4, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 3, 1, 11, 1, 2, 1, 6, 1, 2, 1, 7, 1, 3, 1, 4, 1, 2, 1, 12, 1, 3, 1, 4, 1, 3, 1, 7, 1, 2, 1, 7, 1, 2, 1, 15, 1, 3, 1, 4, 1, 3, 1, 12, 1, 2, 1, 4, 1, 3, 1, 12, 1, 2, 1, 7, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 30 2021

Keywords

Examples

			The a(n) factorizations for n = 2*2, 2*4, 2*8, 2*12, 2*16, 2*32, 2*36, 2*48 are:
  4    8      16       24     32         64           72      96
  2*2  2*4    2*8      4*6    4*8        8*8          2*36    2*48
       2*2*2  4*4      2*12   2*16       2*32         4*18    4*24
              2*2*4    2*2*6  2*2*8      4*16         6*12    6*16
              2*2*2*2         2*4*4      2*4*8        2*6*6   8*12
                              2*2*2*4    4*4*4        2*2*18  2*6*8
                              2*2*2*2*2  2*2*16               4*4*6
                                         2*2*2*8              2*2*24
                                         2*2*4*4              2*4*12
                                         2*2*2*2*4            2*2*4*6
                                         2*2*2*2*2*2          2*2*2*12
                                                              2*2*2*2*6
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The version for partitions is A035363 (A066207).
The odd version is A340101.
The even length case is A340786.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A316439 counts factorizations by product and length
A340102 counts odd-length factorizations of odd numbers into odd factors.
- Even -
A027187 counts partitions of even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum.
A340601 counts partitions of even rank (A340602).
Even bisection of A349906.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[#,OddQ]=={}&]],{n,2,100,2}]
  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));
    A340785(n) = A349906(2*n); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A349906(2*n). - Antti Karttunen, Dec 13 2021

A346703 Product of primes at odd positions in the weakly increasing list (with multiplicity) of prime factors of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 6, 13, 2, 3, 4, 17, 6, 19, 10, 3, 2, 23, 4, 5, 2, 9, 14, 29, 10, 31, 8, 3, 2, 5, 6, 37, 2, 3, 4, 41, 14, 43, 22, 15, 2, 47, 12, 7, 10, 3, 26, 53, 6, 5, 4, 3, 2, 59, 6, 61, 2, 21, 8, 5, 22, 67, 34, 3, 14, 71, 12, 73, 2, 15, 38
Offset: 1

Views

Author

Gus Wiseman, Aug 08 2021

Keywords

Examples

			The prime factors of 108 are (2,2,3,3,3), with odd bisection (2,3,3), with product 18, so a(108) = 18.
The prime factors of 720 are (2,2,2,2,3,3,5), with odd bisection (2,2,3,5), with product 60, so a(720) = 60.
		

Crossrefs

Positions of 2's are A001747.
Positions of primes are A037143 (complement: A033942).
The even reverse version appears to be A329888.
Positions of first appearances are A342768.
The sum of prime indices of a(n) is A346697(n), reverse: A346699.
The reverse version is A346701.
The even version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A209281 (shifted) adds up the odd bisection of standard compositions.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A335433/A335448 rank separable/inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346633 adds up the even bisection of standard compositions.
A346698 gives the sum of the even bisection of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.

Programs

  • Mathematica
    Table[Times@@First/@Partition[Append[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],0],2],{n,100}]

Formula

a(n) * A346704(n) = n.
A056239(a(n)) = A346697(n).

A347448 Number of integer partitions of n with alternating product > 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 120, 161, 209, 275, 355, 460, 585, 750, 946, 1199, 1498, 1881, 2335, 2909, 3583, 4430, 5428, 6666, 8118, 9912, 12013, 14586, 17592, 21252, 25525, 30695, 36711, 43956, 52382, 62469, 74173, 88132, 104303, 123499
Offset: 0

Views

Author

Gus Wiseman, Sep 16 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(2) = 1 through a(7) = 12 partitions:
  (2)  (3)   (4)    (5)     (6)      (7)
       (21)  (31)   (32)    (42)     (43)
             (211)  (41)    (51)     (52)
                    (311)   (222)    (61)
                    (2111)  (321)    (322)
                            (411)    (421)
                            (3111)   (511)
                            (21111)  (2221)
                                     (3211)
                                     (4111)
                                     (31111)
                                     (211111)
		

Crossrefs

The strict case is A000009, except that a(0) = a(1) = 0.
Allowing any alternating product >= 1 gives A000041, reverse A344607.
Ranked by A028983 (reverse A347465), which has complement A028982.
The complement is counted by A119620, reverse A347443.
The multiplicative version is A339890, weak A347456, reverse A347705.
The even-length case is A344608.
Allowing any integer reverse-alternating product gives A347445.
Allowing any integer alternating product gives A347446.
The reverse version is A347449, also the odd-length case.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A347461 counts possible alternating products of partitions.

Programs

  • Maple
    a:= n-> (p-> p(n)-p(iquo(n, 2)))(combinat[numbpart]):
    seq(a(n), n=0..63);  # Alois P. Heinz, Oct 04 2021
  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],altprod[#]>1&]],{n,0,30}]

Formula

a(n) = A000041(n) - A119620(n).

A095268 Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0

Views

Author

Eric W. Weisstein, May 31 2004

Keywords

Comments

A002494 is the number of graphs on n nodes with no isolated points and A095268 is the number of these graphs having distinct degree sequences.
Now that more terms have been computed, we can see that this is not the self-convolution of any integer sequence. - Paul D. Hanna, Aug 18 2006
Is it true that a(n+1)/a(n) tends to 4? Is there a heuristic argument why this might be true? - Gordon F. Royle, Aug 29 2006
Previous values a(30) = 5876236938019300 from Lorand Lucz, Jul 07 2013 and a(31) = 22974847474172100 from Lorand Lucz, Sep 03 2013 are wrong. New values a(30) and a(31) independently computed Kai Wang and Axel Kohnert. - Vaclav Kotesovec, Apr 15 2016
In the article by A. Iványi, G. Gombos, L. Lucz, T. Matuszka: "Parallel enumeration of degree sequences of simple graphs II" is in the tables on pages 258 and 261 a wrong value a(31) = 22974847474172100, but in the abstract another wrong value a(31) = 22974847474172374. - Vaclav Kotesovec, Apr 15 2016
The asymptotic formula given below confirms that a(n+1)/a(n) tends to 4. - Tom Johnston, Jan 18 2023

Examples

			a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333.
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot):
  ()  .  (1,1)  (2,1,1)  (1,1,1,1)
                (2,2,2)  (2,2,1,1)
                         (2,2,2,2)
                         (3,1,1,1)
                         (3,2,2,1)
                         (3,3,2,2)
                         (3,3,3,3)
For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4).
(End)
		

Crossrefs

Cf. A002494, A004250, A007721 (analog for connected graphs), A271831.
Counting the same partitions by sum gives A000569.
Allowing isolated nodes gives A004251.
The version with half-loops is A029889, with covering case A339843.
Covering simple graphs are ranked by A309356 and A320458.
Graphical partitions are ranked by A320922.
The version with loops is A339844, with covering case A339845.
A006125 counts simple graphs, with covering case A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A339659 is a triangle counting graphical partitions.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)

Formula

a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - Tom Johnston, Jan 18 2023

Extensions

Edited by N. J. A. Sloane, Aug 26 2006
More terms from Gordon F. Royle, Aug 21 2006
a(21) and a(22) from Frank Ruskey, Aug 29 2006
a(23) from Frank Ruskey, Aug 31 2006
a(24)-a(29) from Matuszka Tamás, Jan 10 2013
a(30)-a(31) from articles by Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by Gus Wiseman, Dec 31 2020

A339742 Number of factorizations of n into distinct primes or squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 3, 2, 2, 2, 0, 1, 3, 2, 1, 2, 2, 2, 0, 1, 1, 1, 1, 1, 4, 1, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.
The following are equivalent characteristics for any positive integer n:
(1) the prime factors of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops and edges;
(2) n can be factored into distinct primes or squarefree semiprimes.

Examples

			The a(n) factorizations for n = 6, 30, 60, 210, 420 are respectively 2, 4, 3, 10, 9:
  (6)    (5*6)    (6*10)    (6*35)     (2*6*35)
  (2*3)  (2*15)   (2*5*6)   (10*21)    (5*6*14)
         (3*10)   (2*3*10)  (14*15)    (6*7*10)
         (2*3*5)            (5*6*7)    (2*10*21)
                            (2*3*35)   (2*14*15)
                            (2*5*21)   (2*5*6*7)
                            (2*7*15)   (3*10*14)
                            (3*5*14)   (2*3*5*14)
                            (3*7*10)   (2*3*7*10)
                            (2*3*5*7)
		

Crossrefs

Dirichlet convolution of A008966 with A339661.
A008966 allows only primes.
A339661 does not allow primes, only squarefree semiprimes.
A339740 lists the positions of zeros.
A339741 lists the positions of positive terms.
A339839 allows nonsquarefree semiprimes.
A339887 is the non-strict version.
A001358 lists semiprimes, with squarefree case A006881.
A002100 counts partitions into squarefree semiprimes.
A013929 cannot be factored into distinct primes.
A293511 are a product of distinct squarefree numbers in exactly one way.
A320663 counts non-isomorphic multiset partitions into singletons or pairs.
A339840 cannot be factored into distinct primes or semiprimes.
A339841 have exactly one factorization into primes or semiprimes.
The following count factorizations:
- A001055 into all positive integers > 1.
- A050320 into squarefree numbers.
- A050326 into distinct squarefree numbers.
- A320655 into semiprimes.
- A320656 into squarefree semiprimes.
- A320732 into primes or semiprimes.
- A322353 into distinct semiprimes.
- A339742 [this sequence] into distinct primes or squarefree semiprimes.
- A339839 into distinct primes or semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
- A000569 counts graphical partitions (A320922).
- A058696 counts all partitions of 2n (A300061).
- A209816 counts multigraphical partitions (A320924).
- A339656 counts loop-graphical partitions (A339658).
-
The following count partitions/factorizations of even length and give their Heinz numbers:
- A027187/A339846 has no additional conditions (A028260).
- A338914/A339562 can be partitioned into edges (A320911).
- A338916/A339563 can be partitioned into distinct pairs (A320912).
- A339559/A339564 cannot be partitioned into distinct edges (A320894).
- A339560/A339619 can be partitioned into distinct edges (A339561).

Programs

  • Mathematica
    sqps[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqps[n/d],Min@@#>d&]],{d,Select[Divisors[n],PrimeQ[#]||SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[sqps[n]],{n,100}]
  • PARI
    A353471(n) = (numdiv(n)==2*omega(n));
    A339742(n, u=(1+n)) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1) && (dA353471(d), s += A339742(n/d, d))); (s)); \\ Antti Karttunen, May 02 2022

Formula

a(n) = Sum_{d|n squarefree} A339661(n/d).

Extensions

More terms from Antti Karttunen, May 02 2022

A344414 Heinz numbers of integer partitions whose sum is at most twice their greatest part.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        20: {1,1,3}    39: {2,6}
     3: {2}        21: {2,4}      40: {1,1,1,3}
     4: {1,1}      22: {1,5}      41: {13}
     5: {3}        23: {9}        42: {1,2,4}
     6: {1,2}      25: {3,3}      43: {14}
     7: {4}        26: {1,6}      44: {1,1,5}
     9: {2,2}      28: {1,1,4}    46: {1,9}
    10: {1,3}      29: {10}       47: {15}
    11: {5}        30: {1,2,3}    49: {4,4}
    12: {1,1,2}    31: {11}       51: {2,7}
    13: {6}        33: {2,5}      52: {1,1,6}
    14: {1,4}      34: {1,7}      53: {16}
    15: {2,3}      35: {3,4}      55: {3,5}
    17: {7}        37: {12}       56: {1,1,1,4}
    19: {8}        38: {1,8}      57: {2,8}
For example, 56 has prime indices {1,1,1,4} and 7 <= 2*4, so 56 is in the sequence. On the other hand, 224 has prime indices {1,1,1,1,1,4} and 9 > 2*4, so 224 is not in the sequence.
		

Crossrefs

These partitions are counted by A025065 but are different from palindromic partitions, which have Heinz numbers A265640.
The opposite even-weight version appears to be A320924, counted by A209816.
The opposite version appears to be A322109, counted by A110618.
The case of equality in the conjugate version is A340387.
The conjugate opposite version is A344291, counted by A110618.
The conjugate opposite 5-smooth case is A344293, counted by A266755.
The conjugate version is A344296, also counted by A025065.
The case of equality is A344415.
The even-weight case is A344416.
A001222 counts prime factors with multiplicity.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]>=Total[primeMS[#]]/2&]

Formula

A056239(a(n)) <= 2*A061395(a(n)).
Previous Showing 91-100 of 184 results. Next