cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 206 results. Next

A174725 a(n) = (A074206(n) + A008683(n))/2.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 10, 1, 2, 2, 4, 0, 6, 0, 8, 2, 2, 2, 13, 0, 2, 2, 10, 0, 6, 0, 4, 4, 2, 0, 24, 1, 4, 2, 4, 0, 10, 2, 10, 2, 2, 0, 22, 0, 2, 4, 16, 2, 6, 0, 4, 2, 6, 0, 38, 0, 2, 4, 4, 2
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

From Mats Granvik, May 25 2017: (Start)
A074206(n) = A002033(n-1) = a(n) + A174726(n).
A008683(n) = a(n) - A174726(n).
Let m = size of matrix a matrix T, and let T be defined as follows:
T(n,k) = if m = 1 then 1 else if mod(n, k) = 0 then if and(n = k, n = m) then 0 else 1 else if and(n = 1, k = m) then 1 else 0
a(n) is then the number of permutation matrices with a positive contribution in the determinant of matrix T. The determinant of T is equal to the Möbius function A008683, see Mathematica program below for how to compute the determinant.
A174726 is the number of permutation matrices with a negative contribution in the determinant of matrix T.
(End)
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an even number of factors > 1. The non-ordered case is A339846. For example, the a(n) factorizations for n = 12, 24, 30, 32, 36 are:
(2*6) (3*8) (5*6) (4*8) (4*9)
(3*4) (4*6) (6*5) (8*4) (6*6)
(4*3) (6*4) (10*3) (16*2) (9*4)
(6*2) (8*3) (15*2) (2*16) (12*3)
(12*2) (2*15) (2*2*2*4) (18*2)
(2*12) (3*10) (2*2*4*2) (2*18)
(2*2*2*3) (2*4*2*2) (3*12)
(2*2*3*2) (4*2*2*2) (2*2*3*3)
(2*3*2*2) (2*3*2*3)
(3*2*2*2) (2*3*3*2)
(3*2*2*3)
(3*2*3*2)
(3*3*2*2)
(End)

Crossrefs

The odd version is A174726.
The unordered version is A339846.
A001055 counts factorizations, with strict case A045778.
A058696 counts partitions of even numbers, ranked by A300061.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
Other cases of even length:
- A024430 counts set partitions of even length.
- A027187 counts partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A067661 counts strict partitions of even length.
- A332305 counts strict compositions of even length

Programs

  • Mathematica
    (* From Mats Granvik, May 25 2017: (Start) *)
    Clear[t, nn]; nn = 77; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Monitor[Table[Sum[If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], {k, 1, 77}], {n, 1, nn}], n]
    (* The Möbius function as a determinant *) Table[Det[Table[Table[If[m == 1, 1, If[Mod[n, k] == 0, If[And[n == k, n == m], 0, 1], If[And[n == 1, k == m], 1, 0]]], {k, 1, m}], {n, 1, m}]], {m, 1, 42}]
    (* (End) *)
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],EvenQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (Mobius transform of a(n)) + (Mobius transform of A174726). - Mats Granvik, Apr 04 2010
From Mats Granvik, May 25 2017: (Start)
This sequence is the Moebius transform of A074206.
a(n) = (A074206(n) + A008683(n))/2.
(End)
G.f. A(x) satisfies: A(x) = x + Sum_{i>=2} Sum_{j>=2} A(x^(i*j)). - Ilya Gutkovskiy, May 11 2019

Extensions

References to A002033(n-1) changed to A074206(n) by Antti Karttunen, Nov 23 2024

A340102 Number of factorizations of 2n + 1 into an odd number of odd factors > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2020

Keywords

Examples

			The factorizations for 2n + 1 = 135, 225, 315, 405, 675, 1155, 1215:
  135      225      315      405         675         1155      1215
  3*5*9    5*5*9    5*7*9    5*9*9       3*3*75      3*5*77    3*5*81
  3*3*15   3*3*25   3*3*35   3*3*45      3*5*45      3*7*55    3*9*45
           3*5*15   3*5*21   3*5*27      3*9*25      5*7*33    5*9*27
                    3*7*15   3*9*15      5*5*27      3*11*35   9*9*15
                             3*3*3*3*5   5*9*15      5*11*21   3*15*27
                                         3*15*15     7*11*15   3*3*135
                                         3*3*3*5*5             3*3*3*5*9
                                                               3*3*3*3*15
		

Crossrefs

The version for partitions is A160786, ranked by A300272.
The not necessarily odd-length version is A340101.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A316439 counts factorizations by product and length.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n=0, 0, g(2*n+1$2, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Times@@#]&]],{n,1,100,2}];

A361849 Number of integer partitions of n such that the maximum is twice the median.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 4, 3, 4, 7, 9, 9, 15, 16, 20, 26, 34, 37, 50, 55, 68, 86, 103, 117, 145, 168, 201, 236, 282, 324, 391, 449, 525, 612, 712, 818, 962, 1106, 1278, 1470, 1698, 1939, 2238, 2550, 2924, 3343, 3824, 4341, 4963, 5627, 6399, 7256, 8231, 9300
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(11) = 9 partitions:
  211  2111  21111  421     422      4221      631        632
                    3211    221111   4311      4222       5321
                    22111   2111111  2211111   42211      5411
                    211111           21111111  322111     42221
                                               2221111    43211
                                               22111111   332111
                                               211111111  22211111
                                                          221111111
                                                          2111111111
For example, the partition (3,2,1,1) has maximum 3 and median 3/2, so is counted under a(7).
		

Crossrefs

For minimum instead of median we have A118096.
For length instead of median we have A237753.
This is the equal case of A361848.
For mean instead of median we have A361853.
These partitions have ranks A361856.
For "greater" instead of "equal" we have A361857, allowing equality A361859.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.
A361860 counts partitions with minimum equal to median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@#==2*Median[#]&]],{n,30}]

A124944 Table, number of partitions of n with k as high median.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 6, 4, 1, 1, 1, 1, 1, 8, 6, 3, 1, 1, 1, 1, 1, 11, 8, 5, 1, 1, 1, 1, 1, 1, 15, 11, 7, 3, 1, 1, 1, 1, 1, 1, 20, 15, 9, 5, 1, 1, 1, 1, 1, 1, 1, 26, 21, 12, 8, 3, 1, 1, 1, 1, 1, 1, 1, 35, 27, 16, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1, 45, 37, 21, 13, 8, 3
Offset: 1

Views

Author

Keywords

Comments

For a multiset with an odd number of elements, the high median is the same as the median. For a multiset with an even number of elements, the high median is the larger of the two central elements.
This table may be read as an upper right triangle with n >= 1 as column index and k >= 1 as row index. - Peter Munn, Jul 16 2017
Arrange the parts of a partition nonincreasing order. Remove the last part, then the first, then the last remaining part, then the first remaining part, and continue until only a single number, the high median, remains. - Clark Kimberling, May 14 2019

Examples

			For the partition [2,1^2], the sole middle element is 1, so that is the high median. For [3,2,1^2], the two middle elements are 1 and 2; the high median is the larger, 2.
From _Gus Wiseman_, Jul 12 2023: (Start)
Triangle begins:
   1
   1  1
   1  1  1
   2  1  1  1
   3  1  1  1  1
   4  3  1  1  1  1
   6  4  1  1  1  1  1
   8  6  3  1  1  1  1  1
  11  8  5  1  1  1  1  1  1
  15 11  7  3  1  1  1  1  1  1
  20 15  9  5  1  1  1  1  1  1  1
  26 21 12  8  3  1  1  1  1  1  1  1
  35 27 16 10  5  1  1  1  1  1  1  1  1
  45 37 21 13  8  3  1  1  1  1  1  1  1  1
  58 48 29 16 11  5  1  1  1  1  1  1  1  1  1
Row n = 8 counts the following partitions:
  (611)       (521)    (431)   (44)  (53)  (62)  (71)  (8)
  (5111)      (422)    (332)
  (41111)     (4211)   (3311)
  (32111)     (3221)
  (311111)    (2222)
  (221111)    (22211)
  (2111111)
  (11111111)
(End)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A027336(n-1), ranks A364056.
Column k = 1 in the low version is A027336, ranks A363488.
The low version of this triangle is A124943.
The rank statistic for this triangle is A363942, low version A363941.
A version for mean instead of median is A363946, low A363945.
A version for mode instead of median is A363953, low A363952.
A008284 counts partitions by length, maximum, or decreasing mean.
A026794 counts partitions by minimum, strict A026821.
A325347 counts partitions with integer median, ranks A359908.
A359893 and A359901 count partitions by median.
A360005(n)/2 returns median of prime indices.

Programs

  • Mathematica
    Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 1)/2]]] &, IntegerPartitions[#]]] &, Range[13]]  (* Peter J. C. Moses, May 14 2019 *)

A174726 a(n) = (A002033(n-1) - A008683(n))/2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 2, 4, 1, 7, 1, 8, 1, 1, 1, 13, 1, 1, 1, 10, 1, 7, 1, 4, 4, 1, 1, 24, 1, 4, 1, 4, 1, 10, 1, 10, 1, 1, 1, 22, 1, 1, 4, 16, 1, 7, 1, 4, 1, 7, 1, 38, 1, 1, 4, 4, 1
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

a(n) is the number of permutation matrices with a negative contribution to the determinant that is the Möbius function. See A174725 for how the determinant is defined. - Mats Granvik, May 26 2017
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an odd number of factors > 1. The unordered case is A339890. For example, the a(n) factorizations for n = 8, 12, 24, 30, 32, 36 are:
(8) (12) (24) (30) (32) (36)
(2*2*2) (2*2*3) (2*2*6) (2*3*5) (2*2*8) (2*2*9)
(2*3*2) (2*3*4) (2*5*3) (2*4*4) (2*3*6)
(3*2*2) (2*4*3) (3*2*5) (2*8*2) (2*6*3)
(2*6*2) (3*5*2) (4*2*4) (2*9*2)
(3*2*4) (5*2*3) (4*4*2) (3*2*6)
(3*4*2) (5*3*2) (8*2*2) (3*3*4)
(4*2*3) (2*2*2*2*2) (3*4*3)
(4*3*2) (3*6*2)
(6*2*2) (4*3*3)
(6*2*3)
(6*3*2)
(9*2*2)
(End)

Crossrefs

The even version is A174725.
The unordered case is A339890, with even version A339846.
A001055 counts factorizations, with strict case A045778.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A332304 counts strict compositions of odd length.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],OddQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (A002033(n-1) - A008683(n))/2. - Mats Granvik, May 26 2017
For n > 0, a(n) + A174725(n) = A074206(n). - Gus Wiseman, Jan 04 2021

A350945 Heinz numbers of integer partitions of which the number of even parts is equal to the number of even conjugate parts.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 36, 38, 39, 41, 44, 47, 56, 57, 58, 59, 66, 67, 68, 73, 74, 75, 80, 83, 84, 86, 87, 92, 96, 97, 102, 103, 104, 106, 109, 111, 120, 122, 124, 125, 127, 128, 129, 137, 138, 142, 144, 149, 152, 156
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   5: (3)
   6: (2,1)
   8: (1,1,1)
   9: (2,2)
  11: (5)
  14: (4,1)
  17: (7)
  20: (3,1,1)
  21: (4,2)
  23: (9)
  24: (2,1,1,1)
		

Crossrefs

These partitions are counted by A350948.
These are the positions of 0's in A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?EvenQ]==Count[primeMS[#],?EvenQ]&]

Formula

A257992(a(n)) = A350847(a(n)).

A101707 Number of partitions of n having positive odd rank (the rank of a partition is the largest part minus the number of parts).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 2, 7, 6, 13, 11, 22, 22, 38, 39, 63, 69, 103, 114, 165, 189, 262, 301, 407, 475, 626, 733, 950, 1119, 1427, 1681, 2118, 2503, 3116, 3678, 4539, 5360, 6559, 7735, 9400, 11076, 13372, 15728, 18886, 22184, 26501, 31067, 36947, 43242, 51210, 59818, 70576, 82291, 96750
Offset: 0

Views

Author

Emeric Deutsch, Dec 12 2004

Keywords

Comments

a(n) + A101708(n) = A064173(n).

Examples

			a(7)=2 because the only partitions of 7 with positive odd rank are 421 (rank=1) and 52 (rank=3).
From _Gus Wiseman_, Feb 07 2021: (Start)
Also the number of integer partitions of n into an even number of parts, the greatest of which is odd. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot) are:
  11   .  31     32   33       52     53         54       55
          1111        51       3211   71         72       73
                      3111            3221       3222     91
                      111111          3311       3321     3322
                                      5111       5211     3331
                                      311111     321111   5221
                                      11111111            5311
                                                          7111
                                                          322111
                                                          331111
                                                          511111
                                                          31111111
                                                          1111111111
Also the number of integer partitions of n into an odd number of parts, the greatest of which is even. For example, the a(2) = 1 through a(10) = 13 partitions (empty column indicated by dot, A = 10) are:
  2   .  4     221   6       421     8         432       A
         211         222     22111   422       441       433
                     411             431       621       442
                     21111           611       22221     622
                                     22211     42111     631
                                     41111     2211111   811
                                     2111111             22222
                                                         42211
                                                         43111
                                                         61111
                                                         2221111
                                                         4111111
                                                         211111111
(End)
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The even-rank version is A101708 (A340605).
The even- but not necessarily positive-rank version is A340601 (A340602).
The Heinz numbers of these partitions are (A340604).
Allowing negative odd ranks gives A340692 (A340603).
- Rank -
A047993 counts balanced (rank zero) partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A064174 counts partitions of nonpositive/nonnegative rank (A324521/A324562).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
- Odd -
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A339890 counts factorizations of odd length.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Maple
    b:= proc(n, i, r) option remember; `if`(n=0, max(0, r),
          `if`(i<1, 0, b(n, i-1, r) +b(n-i, min(n-i, i), 1-
          `if`(r<0, irem(i, 2), r))))
        end:
    a:= n-> b(n$2, -1)/2:
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 29 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&OddQ[Max[#]]&]],{n,0,30}] (* Gus Wiseman, Feb 10 2021 *)
    b[n_, i_, r_] := b[n, i, r] = If[n == 0, Max[0, r],
         If[i < 1, 0, b[n, i - 1, r] + b[n - i, Min[n - i, i], 1 -
         If[r < 0, Mod[i, 2], r]]]];
    a[n_] := b[n, n, -1]/2;
    a /@ Range[0, 55] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)

Formula

a(n) = (A000041(n) - A000025(n))/4. - Vladeta Jovovic, Dec 14 2004
G.f.: Sum((-1)^(k+1)*x^((3*k^2+k)/2)/(1+x^k), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004
a(n) = A340692(n)/2. - Gus Wiseman, Feb 07 2021

Extensions

More terms from Joerg Arndt, Oct 07 2012
a(0)=0 prepended by Alois P. Heinz, Jan 29 2021

A350944 Heinz numbers of integer partitions of which the number of odd parts is equal to the number of odd conjugate parts.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 15, 18, 20, 30, 35, 49, 54, 55, 56, 70, 75, 77, 81, 84, 88, 90, 98, 108, 110, 112, 125, 132, 135, 143, 154, 162, 168, 169, 176, 180, 187, 210, 221, 260, 264, 270, 286, 294, 315, 323, 330, 338, 340, 350, 361, 363, 364, 374, 391, 416, 420
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   2: (1)
   6: (2,1)
   9: (2,2)
  10: (3,1)
  12: (2,1,1)
  15: (3,2)
  18: (2,2,1)
  20: (3,1,1)
  30: (3,2,1)
  35: (4,3)
  49: (4,4)
  54: (2,2,2,1)
		

Crossrefs

These partitions are counted by A277103.
The even rank case is A345196.
The conjugate version is A350943, counted by A277579.
These are the positions of 0's in A350951, even A350950.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A349157: # of even parts = # of odd conjugate parts, counted by A277579.
A350848: # even conj parts = # odd conj parts, counted by A045931.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[conj[primeMS[#]],?OddQ]==Count[primeMS[#],?OddQ]&]

Formula

A257991(a(n)) = A344616(a(n)).

A341446 Heinz numbers of integer partitions whose only odd part is the smallest.

Original entry on oeis.org

2, 5, 6, 11, 14, 17, 18, 23, 26, 31, 35, 38, 41, 42, 47, 54, 58, 59, 65, 67, 73, 74, 78, 83, 86, 95, 97, 98, 103, 106, 109, 114, 122, 126, 127, 137, 142, 143, 145, 149, 157, 158, 162, 167, 174, 178, 179, 182, 185, 191, 197, 202, 209, 211, 214, 215, 222, 226
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only odd prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      2: (1)         54: (2,2,2,1)    109: (29)
      5: (3)         58: (10,1)       114: (8,2,1)
      6: (2,1)       59: (17)         122: (18,1)
     11: (5)         65: (6,3)        126: (4,2,2,1)
     14: (4,1)       67: (19)         127: (31)
     17: (7)         73: (21)         137: (33)
     18: (2,2,1)     74: (12,1)       142: (20,1)
     23: (9)         78: (6,2,1)      143: (6,5)
     26: (6,1)       83: (23)         145: (10,3)
     31: (11)        86: (14,1)       149: (35)
     35: (4,3)       95: (8,3)        157: (37)
     38: (8,1)       97: (25)         158: (22,1)
     41: (13)        98: (4,4,1)      162: (2,2,2,2,1)
     42: (4,2,1)    103: (27)         167: (39)
     47: (15)       106: (16,1)       174: (10,2,1)
		

Crossrefs

These partitions are counted by A035363 (shifted left once).
Terms of A340932 can be factored into elements of this sequence.
The even version is A341447.
A001222 counts prime factors.
A005408 lists odd numbers.
A026804 counts partitions whose smallest part is odd.
A027193 counts odd-length partitions, ranked by A026424.
A031368 lists odd-indexed primes.
A032742 selects largest proper divisor.
A055396 selects smallest prime index.
A056239 adds up prime indices.
A058695 counts partitions of odd numbers, ranked by A300063.
A061395 selects largest prime index.
A066207 lists numbers with all even prime indices.
A066208 lists numbers with all odd prime indices.
A112798 lists the prime indices of each positive integer.
A244991 lists numbers whose greatest prime index is odd.
A340932 lists numbers whose smallest prime index is odd.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]

Formula

Also numbers n > 1 such that A055396(n) is odd and A032742(n) belongs to A066207.

A350943 Heinz numbers of integer partitions of which the number of even conjugate parts is equal to the number of odd parts.

Original entry on oeis.org

1, 3, 6, 7, 13, 14, 18, 19, 26, 27, 29, 36, 37, 38, 42, 43, 53, 54, 58, 61, 63, 70, 71, 74, 78, 79, 84, 86, 89, 101, 105, 106, 107, 113, 114, 117, 122, 126, 130, 131, 139, 140, 142, 151, 156, 158, 162, 163, 171, 173, 174, 178, 181, 190, 193, 195, 199, 202, 210
Offset: 1

Views

Author

Gus Wiseman, Jan 28 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   1: ()
   3: (2)
   6: (2,1)
   7: (4)
  13: (6)
  14: (4,1)
  18: (2,2,1)
  19: (8)
  26: (6,1)
  27: (2,2,2)
  29: (10)
  36: (2,2,1,1)
  37: (12)
  38: (8,1)
  42: (4,2,1)
For example, the partition (6,3,2) has conjugate (3,3,2,1,1,1) and 1 = 1 so 195 is in the sequence.
		

Crossrefs

These partitions are counted by A277579.
The conjugate version is A349157, also counted by A277579.
These are the positions of 0's in A350942.
A000041 = integer partitions, strict A000009.
A056239 adds up prime indices, counted by A001222, row sums of A112798.
A122111 = conjugation using Heinz numbers.
A257991 = # of odd parts, conjugate A344616.
A257992 = # of even parts, conjugate A350847.
A316524 = alternating sum of prime indices.
The following rank partitions:
A325040: product = product of conjugate, counted by A325039.
A325698: # of even parts = # of odd parts, counted by A045931.
A350848: # of even conj parts = # of odd conj parts, counted by A045931.
A350944: # of odd parts = # of odd conjugate parts, counted by A277103.
A350945: # of even parts = # of even conjugate parts, counted by A350948.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]

Formula

A350847(a(n)) = A257991(a(n)).
Previous Showing 51-60 of 206 results. Next