A079209 Number of isomorphism classes of associative commutative non-anti-associative non-anti-commutative closed binary operations on a set of order n, listed by class size.
0, 0, 3, 0, 0, 3, 9, 0, 0, 0, 3, 0, 0, 16, 39
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(2) = 8 chains: 12/1 12/2/1 12/3/1 12/4/1 12/6/1 12/4/2/1 12/6/2/1 12/6/3/1
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; chns[n_]:=If[n==1,1,Sum[chns[d],{d,Most[Divisors[n]]}]]; Table[chns[chern[n]],{n,0,3}]
a(n)={my(sig=vector(n,i,i), m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k)))} \\ Andrew Howroyd, Aug 30 2020
Do[ Print[ DivisorSigma[0, n! - 1]], {n, 2, 40} ] DivisorSigma[0,Range[2,80]!-1] (* Harvey P. Dale, Aug 17 2024 *)
{ f=1; for (n=2, 100, f*=n; if (n>1, a=numdiv(f - 1), a=0); write("b064145.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 09 2009
Triangle T(n,k) begins: 1; 1; 0, 3; 0, 0, 3, 9; 0, 0, 0, 3, 0, 0, 16, 39; 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 4, 0, 103, 201;
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 24: {1,1,1,2} 32: {1,1,1,1,1} 48: {1,1,1,1,2} 64: {1,1,1,1,1,1} 96: {1,1,1,1,1,2} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 192: {1,1,1,1,1,1,2} 256: {1,1,1,1,1,1,1,1} 288: {1,1,1,1,1,2,2} 384: {1,1,1,1,1,1,1,2} 512: {1,1,1,1,1,1,1,1,1}
supfac[n_]:=Product[k!,{k,n}]; facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; Select[Range[1000],facsusing[Rest[Array[supfac,30]],#]!={}&]
The a(4) = 28 chains: 24 24/1 24/2/1 24/4/2/1 24/8/4/2/1 24/2 24/3/1 24/8/2/1 24/12/4/2/1 24/3 24/4/1 24/8/4/1 24/4 24/4/2 24/8/4/2 24/8 24/8/1 24/12/2/1 24/12 24/8/2 24/12/3/1 24/8/4 24/12/4/1 24/12/1 24/12/4/2 24/12/2 24/12/3 24/12/4
chnsc[n_]:=If[!UnsameQ@@Last/@FactorInteger[n],{},If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]]]; Table[Length[chnsc[n!]],{n,0,6}]
Triangle begins: 1 0 1 0 1 2 0 1 6 9 4 0 1 14 45 52 20 0 1 28 183 496 655 420 105 0 1 58 633 2716 5755 6450 3675 840 Row n = 4 counts the following chains: 24/1 24/2/1 24/4/2/1 24/8/4/2/1 24/3/1 24/6/2/1 24/12/4/2/1 24/4/1 24/6/3/1 24/12/6/2/1 24/6/1 24/8/2/1 24/12/6/3/1 24/8/1 24/8/4/1 24/12/1 24/12/2/1 24/12/3/1 24/12/4/1 24/12/6/1
b:= proc(n) option remember; expand(x*(`if`(n=1, 1, 0) + add(b(d), d=numtheory[divisors](n) minus {n}))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n!)): seq(T(n), n=1..10); # Alois P. Heinz, Aug 23 2020
nv=5; chnsc[n_]:=Select[Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,DeleteCases[Divisors[n],n]}],{n}],MemberQ[#,1]&]; Table[Length[Select[chnsc[n!],Length[#]==k&]],{n,nv},{k,1+PrimeOmega[n!]}]
For n = 5, n! = 120; divisors = {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}; differences = {1,1,1,1,1,2,2,2,3,5,4,6,10,20,60}; intersection = {1,2,3,4,5,6,10,20,60}, so a(5) = 9.
f:= proc(n) local D,L; D:= numtheory:-divisors(n!); L:= sort(convert(D,list)); nops(convert(L[2..-1]-L[1..-2],set) intersect D); end proc: map(f, [$0..34]); # Robert Israel, Jul 03 2017
a[n_ ] := Length[Intersection[Drop[d=Divisors[n! ], 1]-Drop[d, -1], d]]
a(n) = {my(v = List(), f = n!, d1 = 1, del); fordiv(f, d, if(d > 1, del = d - d1; if(!(f % del), listput(v, del)); d1 = d)); #Set(v);} \\ Amiram Eldar, Jun 15 2024
Triangle T(n,k) begins: 0; 0; 2, 0; 2, 0, 4, 6; 2, 0, 0, 4, 5, 0, 46, 73; 2, 0, 0, 0, 4, 0, 0, 8, 0, 2, 36, 0, 43, 2, 473, 1020; ...
Comments