cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A027759 Numerator of Sum_{p prime, p-1|n} 1/p.

Original entry on oeis.org

1, 5, 1, 31, 1, 41, 1, 31, 1, 61, 1, 3421, 1, 5, 1, 557, 1, 821, 1, 371, 1, 121, 1, 3421, 1, 5, 1, 929, 1, 15745, 1, 557, 1, 5, 1, 2557843, 1, 5, 1, 15541, 1, 1805, 1, 743, 1, 241, 1, 60887, 1, 61, 1, 1673, 1, 821, 1, 929, 1, 301, 1, 79085411, 1, 5, 1, 557
Offset: 1

Views

Author

Keywords

Examples

			1/2, 5/6, 1/2, 31/30, 1/2, 41/42, 1/2, 31/30, 1/2, 61/66, 1/2, 3421/2730, 1/2, 5/6, 1/2, 557/510, ...
		

Crossrefs

Cf. A027760 (denominator).

Programs

  • Mathematica
    a[n_] := 1/(Select[Divisors[n], PrimeQ[# + 1]&] + 1) // Total // Numerator;
    Array[a, 100] (* Jean-François Alcover, Sep 20 2020 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, if (isprime(d+1), 1/(d+1)))); \\ Michel Marcus, May 06 2021

Formula

a(2n-1) = 1 and a(2n) = A000146(n)* A002445(n) - A000367(n) for n > 0. - Thomas Ordowski, May 06 2021

Extensions

a(57)-a(64) from John Cerkan, Mar 21 2018

A330541 Triangle read by rows: T(n,k) = gcd {x^n - x^k : x is an integer}, 0 < k < n.

Original entry on oeis.org

2, 6, 2, 2, 12, 2, 30, 2, 24, 2, 2, 60, 2, 24, 2, 42, 2, 120, 2, 24, 2, 2, 252, 2, 240, 2, 24, 2, 30, 2, 504, 2, 240, 2, 24, 2, 2, 60, 2, 504, 2, 240, 2, 24, 2, 66, 2, 120, 2, 504, 2, 240, 2, 24, 2, 2, 132, 2, 240, 2, 504, 2, 240, 2, 24, 2
Offset: 2

Views

Author

Peter Kagey, Dec 17 2019

Keywords

Comments

All diagonals are weakly increasing, T(n,k) divides T(n+1,k+1), and the m-th diagonal converges to A079612(m).
First column is A027760.
First value where T(n,k) < gcd(2^n - 2^k, 3^n - 3^k) is T(12,1) = 2 < 46.
Maximum value in the n-th row is given by A330542(n).

Examples

			Table begins:
  n\k|  1    2    3    4    5    6    7    8   9  10 11
  ---+-------------------------------------------------
   2 |  2;
   3 |  6,   2;
   4 |  2,  12,   2;
   5 | 30,   2,  24,   2;
   6 |  2,  60,   2,  24,   2;
   7 | 42,   2, 120,   2,  24,   2;
   8 |  2, 252,   2, 240,   2,  24,   2;
   9 | 30,   2, 504,   2, 240,   2,  24,   2;
  10 |  2,  60,   2, 504,   2, 240,   2,  24,  2;
  11 | 66,   2, 120,   2, 504,   2, 240,   2, 24,  2;
  12 |  2, 132,   2, 240,   2, 504,   2, 240,  2, 24, 2.
		

Crossrefs

A108939 Triangle read by rows in which row n lists all primes p such that p-1|n.

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 7, 2, 2, 3, 5, 2, 2, 3, 11, 2, 2, 3, 5, 7, 13, 2, 2, 3, 2, 2, 3, 5, 17, 2, 2, 3, 7, 19, 2, 2, 3, 5, 11, 2, 2, 3, 23, 2, 2, 3, 5, 7, 13, 2, 2, 3, 2, 2, 3, 5, 29, 2, 2, 3, 7, 11, 31, 2, 2, 3, 5, 17, 2, 2, 3, 2, 2, 3, 5, 7, 13, 19, 37, 2, 2, 3, 2, 2, 3, 5, 11, 41, 2
Offset: 1

Views

Author

Philippe Deléham, Jul 20 2005

Keywords

Comments

Row 2n-1 contains only the term 2.

Examples

			Row n = 1 : 2 because 1|1.
Row n = 2 : 2, 3 because 1|2 and 2|2.
Row n = 3 : 2 because 1|3.
Row n = 4 : 2, 3, 5 because 1|4, 2|4 and 4|4.
Row n = 5 : 2 because 1|5.
Row n = 6 : 2, 3, 7 because 1|6, 2|6 and 6|6.
Row n = 7 : 2 because 1|7.
Row n = 8 : 2, 3, 5 because 1|8, 2|8 and 4|8.
Row n = 9 : 2 because 1|9.
Row n = 10 : 2, 3, 11 because 1|10, 2|10 and 10|10.
Row n = 11 : 2 because 1|11.
Row n = 12 : 2, 3, 5, 7, 13 because 1|12, 2|12, 4|12, 6|12 = and 12|12.
		

Crossrefs

Row products are A027760. Row sums are A085020. Cf. A067513, A108077.

Programs

  • Maple
    with(numtheory): for n from 1 to 20 do div:=divisors(n): A:=[seq(div[j]+1,j=1..tau(n))]: B:={}: for i from 1 to tau(n) do if isprime(A[i])=true then B:=B union {A[i]} else B:=B: fi: od: C:=convert(B,list): b[n]:=C: od: for n from 1 to 20 do b[n]:=b[n] od; # yields sequence in triangular form - Emeric Deutsch, Aug 03 2005

Extensions

Corrected by Robert Israel, Sep 21 2023

A141321 a(n) = -A141055(n)/(n+1)!.

Original entry on oeis.org

1, 1, 10, 5, 42, 14, 60, 15, 110, 22, 5460, 910, 420, 60, 2040, 255, 11970, 1330, 23100, 2310, 15180, 1380, 163800, 13650, 3276, 252, 8120, 580, 286440, 19096, 314160, 19635, 3570, 210, 11515140, 639730, 103740, 5460
Offset: 0

Views

Author

Paul Curtz, Aug 02 2008

Keywords

Comments

a(n+1)/a(n)= 2/2, 30/3, 2/4, 42/5, 2/6, 30/7, 2/8, 66/9, 2/10, 2730/11, 2/12 = A027760(n+2)/(n+1), see A141410. Numerators are also A141056(n+3).

Crossrefs

Programs

  • Maple
    A141055 := proc(n) if n = 0 then -1; else procname(n-1)*A027760(n+2) ; end if; end proc:
    A141321 := proc(n) -A141055(n)/(n+1)! ; end proc: # R. J. Mathar, Jul 08 2011
  • Mathematica
    (* b = A141055 *) b[n_] := b[n] = b[n-1]*If[OddQ[n], 2, Denominator[BernoulliB[n+2]]]; b[0]=-1; a[n_] := -b[n]/(n+1)!; Table[a[n], {n, 0, 37}] (* Jean-François Alcover, Dec 18 2014 *)
  • PARI
    a(n)=if(n, my(pr=a(n-1)); fordiv(n+2, d, if(isprime(d+1), pr*=d+1)); pr, 1)/(n+1) \\ Charles R Greathouse IV, Jul 08 2011

Formula

a(2n) / a(2n+1) = n + 1.

A322702 a(n) is the product of primes p such that p+1 divides n.

Original entry on oeis.org

1, 1, 2, 3, 1, 10, 1, 21, 2, 1, 1, 330, 1, 13, 2, 21, 1, 170, 1, 57, 2, 1, 1, 53130, 1, 1, 2, 39, 1, 290, 1, 651, 2, 1, 1, 5610, 1, 37, 2, 399, 1, 5330, 1, 129, 2, 1, 1, 2497110, 1, 1, 2, 3, 1, 9010, 1, 273, 2, 1, 1, 10727970, 1, 61, 2, 651, 1, 10, 1, 201, 2
Offset: 1

Views

Author

Daniel Suteu, Dec 23 2018

Keywords

Comments

In general, a(n) is the product of A072627(n) distinct prime factors, with a(n) = 1 iff A072627(n) = 0.

Examples

			For n=12, the divisors of 12 are {1, 2, 3, 4, 6, 12}. The prime numbers p, such that p+1 is a divisor of 12, are {2, 3, 5, 11}, therefore a(12) = 2 * 3 * 5 * 11 = 330.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(`if`(isprime(d-1), d-1, 1), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 29 2018
  • Mathematica
    Array[Apply[Times, Select[Divisors@ #, PrimeQ[# - 1] &] - 1 /. {} -> {1}] &, 69] (* Michael De Vlieger, Jan 07 2019 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]-1), d[k]-1, 1));

Formula

a(n) = Product_{p prime, p+1 divides n} p.
a(n) = denominator of Sum_{p prime, p+1 divides n} 1/p.
a(n) = Product_{d|n, d-1 is prime} (d-1), where d runs over the divisors of n.
a(2*n + 1) = 2, iff n == 1 (mod 3), else a(2*n + 1) = 1.
A001221(a(n)) = A072627(n). - Antti Karttunen, Jan 12 2019

A141055 The n-th differences of the row A141045(n,.).

Original entry on oeis.org

-1, -2, -60, -120, -5040, -10080, -302400, -604800, -39916800, -79833600, -217945728000, -435891456000, -2615348736000, -5230697472000, -2667655710720000, -5335311421440000, -4257578514309120000, -8515157028618240000, -2810001819444019200000
Offset: 0

Views

Author

Paul Curtz, Aug 01 2008

Keywords

Comments

Can be thought of as the second sequence of a family: the first is A091137, the third starts 1, 2, 84, 168.

Examples

			The first differences of A141045(2,.) are 11-(-19)=30 and -19-11 = -30. The 2nd difference is a(2)= -30-30= -60.
		

Programs

  • Mathematica
    a[n_] := a[n] = a[n-1]*If[OddQ[n], 2, Denominator[BernoulliB[n+2]]]; a[0]=-1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 17 2014 *)
  • PARI
    a(n)=if(n,my(pr=a(n-1));fordiv(n+2,d,if(isprime(d+1),pr*=d+1));pr,-1) \\ Charles R Greathouse IV, Jul 08 2011

Formula

a(n+1) = a(n)*A027760(n+3).

Extensions

Edited and extended by R. J. Mathar, Aug 12 2008

A165823 Large denominators of Bernoulli numbers. Mix A002445, 2*A141421 .

Original entry on oeis.org

1, 2, 6, 24, 30, 1440, 42, 120960, 30, 7257600, 66, 958003200, 2730, 5230697472000, 6, 62768369664000, 510, 64023737057280000
Offset: 0

Views

Author

Paul Curtz, Sep 28 2009

Keywords

Comments

b(n)=a(2n+1)/a(2n) =2,4,48,2880,241920,145152,= 2*(1,2,24,1440,=1,2*A141421). Among other denominators, A027642,A141056,A164020. 2*A141421 is second bisection of A091137 which is linked to Bernoulli via A027760. See A160014,von Staudt-Clausen theorem.

A225821 a(n) = Product_{p | p is prime and p, p-1 both divide n}.

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 10, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 10, 1, 42, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 30, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 10, 1, 2, 1, 42
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 iff n is even and is a term of A226872. - Daniel Suteu, Jul 28 2019
From Bernard Schott, Jul 30 2019: (Start)
a(n) = n if n = 1, 2, 6, 42, 1806.
a(n) = 6 if n is of the form 2^i*3^j, i and j >= 1, so if n is a term of A033845.
a(n) = 10 if n is of the form 2^i*5^j, i >= 2 and j >= 1.
a(n) = 30 if n is of the form 2^i*3^j*5^k, i >=2, j >= 1 and k >= 1. (End)

Crossrefs

Programs

  • Mathematica
    fa=FactorInteger; d[m_]:= Product[If[IntegerQ[m/(fa[m][[i, 1]]-1)],fa[m][[i, 1]], 1], {i, Length@fa@m}]; Table[d[n], {n, 1, 333}]
  • PARI
    a(n)=my(f=factor(n)[,1]); prod(i=1,#f,if(n%(f[i]-1)==0,f[i],1)) \\ Charles R Greathouse IV, Nov 13 2013
  • Sage
    def A225821(n) : return prod(p for (p,m) in factor(n) if n%(p-1)==0) # Eric M. Schmidt, Jul 31 2013
    

Formula

a(n) = denominator(A031971(n)/n) = gcd(n, A027642(n)). - Daniel Suteu, Jul 28 2019

A368117 a(n) = Product_{(s - 2)|n, s prime} s if n > 0, a(0) = 1.

Original entry on oeis.org

1, 3, 3, 15, 3, 21, 15, 3, 3, 165, 21, 39, 15, 3, 3, 1785, 3, 57, 165, 3, 21, 345, 39, 3, 15, 21, 3, 4785, 3, 93, 1785, 3, 3, 195, 57, 777, 165, 3, 3, 615, 21, 129, 345, 3, 39, 922845, 3, 3, 15, 3, 21, 15105, 3, 3, 4785, 273, 3, 885, 93, 183, 1785, 3, 3
Offset: 0

Views

Author

Peter Luschny, Dec 13 2023

Keywords

Comments

All terms are squarefree.

Examples

			The divisors of 15 are {1, 3, 5, 15}. Adding 2 to the divisors gives {3, 5, 7, 17}, which are all primes. Therefore a(15) = 3*5*7*17 = 1785.
		

Crossrefs

Cf. A160014, A007947 (radical of n, m=0), A141056 and A027760 (Clausen numbers, m=1).

Programs

  • Mathematica
    {1}~Join~Array[Times @@ Select[Divisors[#] + 2, PrimeQ] &, 62] (* Michael De Vlieger, Dec 14 2023 *)
  • PARI
    a(n) = if (n>0, my(d=divisors(n)); prod(k=1, #d, if (isprime(p=d[k]+2), p, 1)), 1); \\ Michel Marcus, Dec 15 2023
  • SageMath
    def a(n): return (mul(s for s in map(lambda i: i + 2, divisors(n))
                      if is_prime(s)) if n > 0 else 1)
    print([a(n) for n in range(63)])
    

Formula

a(n) = A160014(2, n).

A176493 A091137(n)/(n+1).

Original entry on oeis.org

1, 1, 4, 6, 144, 240, 8640, 15120, 403200, 725760, 43545600, 79833600, 201180672000, 373621248000, 2092278988800, 3923023104000, 1883051089920000, 3556874280960000, 2688996956405760000, 5109094217170944000, 1605715325396582400000, 3065456530302566400000
Offset: 0

Views

Author

Paul Curtz, Apr 19 2010

Keywords

Formula

a(n) = A174727(n)/A027760(n+1).
Previous Showing 21-30 of 32 results. Next