cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A007845 Least positive integer k for which 5^n divides k!.

Original entry on oeis.org

1, 5, 10, 15, 20, 25, 25, 30, 35, 40, 45, 50, 50, 55, 60, 65, 70, 75, 75, 80, 85, 90, 95, 100, 100, 105, 110, 115, 120, 125, 125, 125, 130, 135, 140, 145, 150, 150, 155, 160, 165, 170, 175, 175, 180, 185, 190, 195, 200, 200, 205, 210, 215, 220, 225, 225, 230, 235, 240, 245
Offset: 0

Views

Author

Bruce Dearden and Jerry Metzger

Keywords

Comments

Also the smallest factorial having at least n trailing zeros. - Jud McCranie, Oct 05 2010
a(n) ~ 4n, a(n) > 4n. Every positive multiple of 5 occurs as much as the exponent of 5 in the prime factorization. - David A. Corneth, Jul 12 2016
Least k such that A027868(k) >= n. - Robert Israel, Jul 12 2016
See A007843 and A007844 for the analog for 2 and 3 instead of 5. - M. F. Hasler, Dec 27 2019

References

  • H. Ibstedt, Smarandache Primitive Numbers, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 216-229.

Crossrefs

Programs

  • Maple
    1, seq(t $ padic:-ordp(t,5), t=5..1000, 5); # Robert Israel, Jul 12 2016
  • Mathematica
    lpi[n_]:=Module[{k=1,n5=5^n},While[!Divisible[k!,n5],k++];k]; Array[ lpi,60,0] (* Harvey P. Dale, Jun 19 2012 *)
  • PARI
    a(n) = {k = 1; while (valuation(k!, 5) < n, k++); k;} \\ Michel Marcus, Aug 19 2013
    
  • PARI
    a(n) = {my(ck = 4 * n, k = 5 * floor(ck/5), t = 0); if(ck > 0, t = sum(i = 1, logint(ck,5),ck\=5)); while(t < n, k+=5; t+=valuation(k,5));max(1,k)} \\ David A. Corneth, Jul 12 2016

Formula

a(n) = 5*A228297(n) for n > 0: see A007843. - M. F. Hasler, Dec 27 2019

A054893 a(n) = Sum_{j > 0} floor(n/4^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from highest power of 4 dividing n! (see A090616).

Examples

			  a(10^0) = 0.
  a(10^1) = 2.
  a(10^2) = 32.
  a(10^3) = 330.
  a(10^4) = 3331.
  a(10^5) = 33330.
  a(10^6) = 333330.
  a(10^7) = 3333329.
  a(10^8) = 33333328.
  a(10^9) = 333333326.
		

Crossrefs

Cf. A053737, A235127 (first differences).

Programs

  • Magma
    function A054893(n)
      if n eq 0 then return n;
      else return A054893(Floor(n/4)) + Floor(n/4);
      end if; return A054893;
    end function;
    [A054893(n): n in [0..103]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    Table[t=0; p=4; While[s=Floor[n/p]; t=t+s; s>0, p *= 4]; t, {n,0,100}]
    Table[Total[Floor/@(n/NestList[4#&,4,6])],{n,0,80}] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    a(n) = (n - sumdigits(n,4))/3; \\ Kevin Ryde, Jan 08 2024
  • SageMath
    def A054893(n):
        if (n==0): return 0
        else: return A054893(n//4) + (n//4)
    [A054893(n) for n in range(104)] # G. C. Greubel, Feb 09 2023
    

Formula

a(n) = floor(n/4) + floor(n/16) + floor(n/64) + floor(n/256) + ...
a(n) = (n - A053737(n))/3.
From Hieronymus Fischer, Sep 15 2007: (Start)
a(n) = a(floor(n/4)) + floor(n/4).
a(4*n) = a(n) + n.
a(n*4^m) = a(n) + n*(4^m-1)/3.
a(k*4^m) = k*(4^m-1)/3, for 0 <= k < 4, m >= 0.
Asymptotic behavior:
a(n) = n/3 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/3; equality holds true for powers of 4.
a(n) >= (n-3)/3 - floor(log_4(n)); equality holds true for n = 4^m - 1, m>0. lim inf (n/3 - a(n)) = 1/3, for n-->oo.
lim sup (n/3 - log_4(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_4(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(4^k)/(1-x^(4^k)). (End)
Partial sums of A235127. - R. J. Mathar, Jul 08 2021

Extensions

Edited by Hieronymus Fischer, Sep 15 2007
Examples added by Hieronymus Fischer, Jun 06 2012

A090617 Exponent of highest power of 8 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			a(8)=2 since 8! = 40320 = 8^2 * 630.
		

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[n!,8],{n,0,80}] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    a(n) = valuation(n!, 8); \\ Michel Marcus, Jul 10 2022

Formula

a(n) = A090622(n, 8) = floor(A011371(n)/3) = floor((floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...)/3).
a(n) = A244413(n!) . - R. J. Mathar, Jul 08 2021

A102679 Number of digits >= 7 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007093 (numbers in base 7). - Bernard Schott, Feb 12 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..125); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 3/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A080087 Number of factors of 5 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 9, 10, 12, 13, 14, 15, 16, 16, 18, 19, 20, 22, 24, 24, 25, 25, 26, 31, 32, 33, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 46, 47, 47, 51, 53, 55, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 69, 71, 75, 76, 76, 77, 81, 82, 84, 84, 86, 87, 89, 90
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

Highest power of 5 dividing prime(n)! = A039716(n), or also the number of trailing end 0's in A039716(n). - Lekraj Beedassy, Oct 31 2010

Crossrefs

Programs

  • Maple
    R:= NULL: v:= 0: p:= 0:
    for i from 1 to 100 do
       q:= p;
       p:= nextprime(p);
       v:= v + add(1+padic:-ordp(x,5), x = 1+floor(q/5) .. floor(p/5));
       R:= R,v;
    od:
    R; # Robert Israel, Sep 27 2023
  • Mathematica
    lst={};Do[p=Prime[n];s=0;While[p>1,p=IntegerPart[p/5];s+=p;];AppendTo[lst,s],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n) = valuation(prime(n)!, 5); \\ Michel Marcus, Jan 15 2015

Formula

a(n) = Sum_{k=1..L} floor(prime(n)/5^k), where L = log(p_n)/log(5).
a(n) = A112765(A039716(n)). - Michel Marcus, Sep 28 2023

A090623 Triangle of T(n,k) = [n/k] + [n/k^2] + [n/k^3] + [n/k^4] + ... for n, k > 1.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 7, 2, 2, 1, 1, 1, 1, 7, 4, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 2, 1, 1, 1
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Rows start:
  1;
  1,1;
  3,1,1;
  3,1,1,1;
  4,2,1,1,1;
  4,2,1,1,1,1;
  7,2,2,1,1,1,1;
  7,4,2,1,1,1,1,1;
  8,4,2,2,1,1,1,1,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    A090623[n_, k_] := Quotient[n - DigitSum[n, k], k - 1];
    Table[A090623[n, k], {n, 2, 15}, {k, 2, n}] (* Paolo Xausa, Sep 02 2025 *)
  • PARI
    T(n,k) = {my(s = 0, j = 1); while(p=n\k^j, s += p; j++); s;} \\ Michel Marcus, Feb 02 2016
    
  • PARI
    T(n,k) = (n - sumdigits(n,k))/(k-1) \\ Zhuorui He, Aug 25 2025

Formula

For p prime, T(n, p) = A090622(n, p) is the number of times that p is a factor of n!.
T(n,k) = (n - A240236(n, k))/(k - 1). - Zhuorui He, Aug 25 2025

Extensions

a(41) onward corrected by Zhuorui He, Aug 25 2025

A102681 Number of digits >= 8 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007094 (numbers in base 8). - Bernard Schott, Feb 18 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=8 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..120); # Emeric Deutsch, Feb 23 2005

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(8*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A006488 Numbers n such that n! has a square number of digits.

Original entry on oeis.org

0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476
Offset: 1

Views

Author

Keywords

Comments

Numbers whose square is represented by the number of digits of n!: 1, 2, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 25, 28, 29, ..., . - Robert G. Wilson v, May 14 2014
From Bernard Schott, Jan 04 2020: (Start)
In M. Gardner's book, see reference, there is a tree printout of 105! with 169 digits, where the bottom row consists of the 25 trailing zeros of 105!. M. Gardner does not explain if this is the only factorial that can be displayed in a similar tree form.
Proof: If m! has q^2 digits, hence the number of trailing zeros in m! must be equal to 2*q-1 to satisfy this triangular look; m = 105 satisfies these two conditions with q = 13 because 105! has 13^2 = 169 digits and 2*13-1 = 25 trailing zeros.
When m < 105 and m! has q^2 digits (m <= 81), then q <= 11 and the number of trailing zeros is <= 2*q - 3.
When m > 105 and m! has q^2 digits (m >= 132), then q >= 15 and the number of trailing zeros is >= 2*q + 2.
Hence, only 105! presents such a tree printout.
1
081
39675
8240290
900504101
30580032964
9720646107774
902579144176636
57322653190990515
3326984536526808240
339776398934872029657
99387290781343681609728
0000000000000000000000000
(End)

References

  • M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A027868 (trailing zeros), A034886 (number of digits), A056851.

Programs

  • Magma
    [k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020
  • Mathematica
    LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)
    Select[Range[0,4500],IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)
  • PARI
    isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015
    

A102677 Number of digits >= 6 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007092 (numbers in base 6). - Bernard Schott, Feb 02 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[Most@ DigitCount@ n, -4], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 2/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A090618 Highest power of 9 dividing n!.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 18, 18, 18, 20, 20, 20, 20
Offset: 0

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			a(9)=2 since 9!=362880=9^2*4480.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Range[0,90]!,9] (* Harvey P. Dale, Jun 07 2016 *)

Formula

a(n) =A090622(n, 9) =[A054861(n)/2] =[([n/3]+[n/9]+[n/27]+[n/81]+...)/2].
Previous Showing 21-30 of 72 results. Next