A027880
a(n) = Product_{i=1..n} (12^i - 1).
Original entry on oeis.org
1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
Offset: 0
-
[1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
FoldList[Times,1,12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
A022170
Triangle of Gaussian binomial coefficients [ n,k ] for q = 6.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 43, 43, 1, 1, 259, 1591, 259, 1, 1, 1555, 57535, 57535, 1555, 1, 1, 9331, 2072815, 12485095, 2072815, 9331, 1, 1, 55987, 74630671, 2698853335, 2698853335, 74630671, 55987, 1, 1, 335923
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 1;
1, 43, 43, 1;
1, 259, 1591, 259, 1;
1, 1555, 57535, 57535, 1555, 1;
1, 9331, 2072815, 12485095, 2072815, 9331, 1;
1, 55987, 74630671, 2698853335, 2698853335, 74630671, 55987, 1 ;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to Gaussian binomial coefficients
-
A027873 := proc(n)
mul(6^i-1,i=1..n) ;
end procc:
A022170 := proc(n,m)
A027873(n)/A027873(m)/A027873(n-m) ;
end proc: # R. J. Mathar, Jul 19 2017
-
p[n_]:= Product[6^i - 1, {i, 1, n}]; t[n_, k_]:= p[n]/(p[k]*p[n-k]); Table[t[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Aug 13 2016 *)
Table[QBinomial[n,k,6], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 6; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=6; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
A028692
23-factorial numbers.
Original entry on oeis.org
1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028693,
A028694.
-
FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025
A028693
24-factorial numbers.
Original entry on oeis.org
1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028694.
-
FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025
A028694
25-factorial numbers.
Original entry on oeis.org
1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028693.
-
FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025
A263394
a(n) = Product_{i=1..n} (3^i - 2^i).
Original entry on oeis.org
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A269576 (j=4, k=3),
A269661 (j=5, k=4).
-
[&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016
-
Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *)
FoldList[Times,Table[3^i-2^i,{i,15}]] (* Harvey P. Dale, Feb 06 2017 *)
-
a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016
A269576
a(n) = Product_{i=1..n} (4^i - 3^i).
Original entry on oeis.org
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269661 (j=5, k=4).
-
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
A269661
a(n) = Product_{i=1..n} (5^i - 4^i).
Original entry on oeis.org
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269576 (j=4, k=3).
-
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
A220790
Product(6^n - 6^k, k=0..n-1).
Original entry on oeis.org
1, 5, 1050, 8127000, 2273284440000, 22906523331216000000, 8310241106635054164480000000, 108537128570336598656772717772800000000, 51032497739317419104816901041614046625792000000000
Offset: 0
-
[1] cat [&*[(6^n - 6^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
-
/* By the second formula: */
m:=9;
A109354 := [6^(n*(n-1) div 2): n in [0..m-1]];
A027873 := [1] cat [&*[6^i-1: i in [1..n]]: n in [1..m]];
[A109354[i]*A027873[i]: i in [1..m]]; // Bruno Berselli, Jan 30 2013
-
Table[Product[6^n - 6^k, {k, 0, n-1}], {n, 0, 60}]
A320354
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = Product_{j=1..n} (k^j - 1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 16, 21, 0, 1, 4, 45, 416, 315, 0, 1, 5, 96, 2835, 33280, 9765, 0, 1, 6, 175, 11904, 722925, 8053760, 615195, 0, 1, 7, 288, 37625, 7428096, 739552275, 5863137280, 78129765, 0, 1, 8, 441, 98496, 48724375, 23205371904, 3028466566125, 12816818094080, 19923090075, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 16, 45, 96, 175, ...
0, 21, 416, 2835, 11904, 37625, ...
0, 315, 33280, 722925, 7428096, 48724375, ...
0, 9765, 8053760, 739552275, 23205371904, 378832015625, ...
Columns k=1..12 give
A000007,
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880.
-
Table[Function[k, Product[k^j - 1, {j, 1, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[k^(i (i + 1)/2) x^i/Product[(1 + k^j x), {j, 0, i}], {i, 0, n}], {x, 0, n}]][m - n + 1], {m, 0, 9}, {n, 0, m}] // Flatten
Comments