A027877
a(n) = Product_{i=1..n} (9^i - 1).
Original entry on oeis.org
1, 8, 640, 465920, 3056435200, 180476385689600, 95912370410881024000, 458745798479390789599232000, 19747501938318761090457052119040000, 7650586837724400321220283274999910891520000
Offset: 0
A027879
a(n) = Product_{i=1..n} (11^i - 1).
Original entry on oeis.org
1, 10, 1200, 1596000, 23365440000, 3763004112000000, 6666387564654720000000, 129909027758312519942400000000, 27847153692160782464830528512000000000, 65662131721505488121539650946349537280000000000
Offset: 0
-
[1] cat [&*[11^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(11^i-1,i=1..n),n=0..20; # Robert Israel, Nov 24 2015
-
FoldList[Times,1,11^Range[10]-1] (* Harvey P. Dale, Aug 13 2013 *)
Abs@QPochhammer[11, 11, Range[0, 40]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n)=prod(i=1,n,11^i-1) \\ Anders Hellström, Nov 21 2015
A022172
Triangle of Gaussian binomial coefficients [ n,k ] for q = 8.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 73, 73, 1, 1, 585, 4745, 585, 1, 1, 4681, 304265, 304265, 4681, 1, 1, 37449, 19477641, 156087945, 19477641, 37449, 1, 1, 299593, 1246606473, 79936505481, 79936505481, 1246606473, 299593, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 73, 73, 1;
1, 585, 4745, 585, 1;
1, 4681, 304265, 304265, 4681, 1;
1, 37449, 19477641, 156087945, 19477641, 37449, 1;
1, 299593, 1246606473, 79936505481, 79936505481, 1246606473, 299593, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- G. C. Greubel, Rows n=0..50 of triangle, flattened
- R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- Index entries for sequences related to Gaussian binomial coefficients
-
A027876 := proc(n)
mul(8^i-1,i=1..n) ;
end proc:
A022172 := proc(n,m)
A027876(n)/A027876(m)/A027876(n-m) ;
end proc: # R. J. Mathar, Jul 19 2017
-
a027878[n_]:=Times@@ Table[8^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017 *)
Table[QBinomial[n,k,8], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 8; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 27 2018 *)
-
{q=8; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 27 2018
-
from operator import mul
def a027878(n): return 1 if n==0 else reduce(mul, [8**i - 1 for i in range(1, n + 1)])
def T(n, m): return a027878(n)//(a027878(m)*a027878(n - m))
for n in range(11): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Jul 20 2017
A022174
Triangle of Gaussian binomial coefficients [ n,k ] for q = 10.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 111, 111, 1, 1, 1111, 11211, 1111, 1, 1, 11111, 1122211, 1122211, 11111, 1, 1, 111111, 112232211, 1123333211, 112232211, 111111, 1, 1, 1111111, 11223332211, 1123445443211, 1123445443211, 11223332211, 1111111, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 11, 1;
1, 111, 111, 1;
1, 1111, 11211, 1111, 1;
1, 11111, 1122211, 1122211, 11111, 1;
1, 111111, 112232211, 1123333211, 112232211, 111111, 1;
1, 1111111, 11223332211, 1123445443211, 1123445443211, 11223332211, 1111111, 1;
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
-
A027878 := proc(n)
mul(10^i-1,i=1..n) ;
end proc:
A022174 := proc(n,m)
A027878(n)/A027878(m)/A027878(n-m) ;
end proc:# R. J. Mathar, Jul 19 2017
-
a027878[n_]:=Times@@ Table[10^i - 1, {i, n}]; T[n_, m_]:=a027878[n]/( a027878[m] a027878[n - m]); Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten (* Indranil Ghosh, Jul 20 2017, after Maple code *)
Table[QBinomial[n,k,10], {n,0,10}, {k,0,n}]//Flatten (* or *) q:= 10; T[n_, 0]:= 1; T[n_,n_]:= 1; T[n_,k_]:= T[n,k] = If[k < 0 || n < k, 0, T[n-1, k -1] +q^k*T[n-1,k]]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, May 28 2018 *)
-
{q=10; T(n,k) = if(k==0,1, if (k==n, 1, if (k<0 || nG. C. Greubel, May 28 2018
-
from operator import mul
def a027878(n): return 1 if n==0 else reduce(mul, [10**i - 1 for i in range(1, n + 1)])
def T(n, m): return a027878(n)/(a027878(m)*a027878(n - m))
for n in range(11): print([T(n, m) for m in range(n + 1)]) # Indranil Ghosh, Jul 20 2017, after Maple code
A027880
a(n) = Product_{i=1..n} (12^i - 1).
Original entry on oeis.org
1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
Offset: 0
-
[1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
FoldList[Times,1,12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
A028692
23-factorial numbers.
Original entry on oeis.org
1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028693,
A028694.
-
FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025
A028693
24-factorial numbers.
Original entry on oeis.org
1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028694.
-
FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025
A028694
25-factorial numbers.
Original entry on oeis.org
1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028693.
-
FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025
A263394
a(n) = Product_{i=1..n} (3^i - 2^i).
Original entry on oeis.org
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A269576 (j=4, k=3),
A269661 (j=5, k=4).
-
[&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016
-
Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *)
FoldList[Times,Table[3^i-2^i,{i,15}]] (* Harvey P. Dale, Feb 06 2017 *)
-
a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016
A269576
a(n) = Product_{i=1..n} (4^i - 3^i).
Original entry on oeis.org
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269661 (j=5, k=4).
-
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
Comments