A016072 Obsolete sequence of lower bounds for A028444.
1, 4, 6, 13, 501, 2075
Offset: 0
Keywords
References
- Dewdney, "The Armchair Universe," p. 164.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1) = 64 = (4*1+4)^(2*1) = 8^2.
A052200[n_]:=(4(n+1))^(2n); Array[A052200,20,0] (* Paolo Xausa, May 21 2023 *)
The smallest closed lambda term is lambda x.x with encoding 0010 of size 4, giving a(4)=4, as it is in normal form. There is no closed term of size 5, so a(5)=0. a(21)=22 because of term lambda x. (lambda y. y y) (x (lambda y. x)).
a(5) = 30 URDDL: 30 -- -- 20 21 -- -- -- 18 19 22 23 -- 16 17 02 03 24 -- 15 14 01 04 25 26 12 13 06 05 30 27 11 10 07 -- 29 28 -- 09 08 -- -- -- . a(6) = 79 UURDLL: 79 -- -- -- -- -- -- -- 74 75 -- -- -- -- -- -- -- 69 70 73 76 77 -- -- -- -- 64 65 68 71 72 79 78 -- -- -- -- 63 66 67 -- 27 28 -- -- -- -- 61 62 -- 22 23 26 29 30 -- 56 57 60 17 18 21 24 25 32 31 -- 55 58 59 16 19 20 03 04 33 34 -- 54 53 52 15 14 13 02 05 06 35 36 -- -- 51 -- -- 12 01 08 07 38 37 -- -- 50 49 48 11 10 09 40 39 -- -- -- -- -- 47 -- 43 42 41 -- -- -- -- -- -- 46 45 44 -- -- -- -- . n | Number of finite solutions | Maximum length | Instructions that give | A352388(n) | a(n) | the maximum length ------------------------------------------------------------------------- 5 5 30 URDDL 6 21 79 UURDLL 7 127 152 URULLDD 8 618 450 URURUULD 9 2934 241 URRRRDLRR 10 13542 257 URRLDLRRUR 11 61803 1098 URUURUUULLD 12 276650 1448 URUULLDUDDDD 13 1219508 9520 URRRLLDLRRULL 14 5309179 8804 URRURRRLDLRULL 15 22868295 8338 UDDRULUUUULLULD 16 97663066 11348 URRURRRLDDLRUULL 17 414156142 25316 URRRDLULUUUUULURL 18 1746438478 18823 UDDDRULULLULLUULDU Computer solutions a(5) to a(13) found by Giorgio Vecchi. Computer solutions a(14) to a(18) found by Ariel Futoransky.
Module[{a = 8, b = 0}, NestWhileList[(If[OddQ[a], b--, b += 2]; a += Quotient[a, 2]; b) &, b, b != -1 &, 1, 100]] (* Paolo Xausa, Aug 04 2025 *)
def antihydra(start: int = 8, halt: int = 66) -> list[int]: seq = [] a = start b = 0 n = 0 while b != -1: if n > halt: break seq.append(b) # print(f"[{n}] -> ({a}, {b})") if a % 2 == 0: b += 2 else: b -= 1 a += a // 2 n += 1 return seq print(antihydra())
aList := proc(halt) a := 8; u := 0; H := 8; from 0 to halt do q, r := iquo(a, 2), irem(a, 2): a, u := a + q, u + r: H := H,a od: H end: aList(37);
A386792List[n_] := Module[{next}, next[{a_, u_}] := {a, u} + QuotientRemainder[a, 2]; NestList[next, {8, 0}, n][[All, 1]]]; A386792List[38] (* Peter Luschny, Aug 05 2025 *)
def A386792List(n) -> list[int]: (a, b), H = (8, 0), [8] for _ in range(n): a, b = map(sum, zip((a, b), divmod(a, 2))) H.append(a) return H
E.g. B(3) is of the form: 1: A+ -> 2 2: A+ -> 3 3: Halt Halting with B(3)=2
Table[(6n+1)^(2n)-1,{n,0,20}] (* Harvey P. Dale, Dec 24 2021 *)
makelist((6*n + 1)^(2*n) - 1, n, 0, 20); /* Franck Maminirina Ramaharo, Jan 15 2019 */
Comments