cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A132769 a(n) = n*(n + 27).

Original entry on oeis.org

0, 28, 58, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 520, 574, 630, 688, 748, 810, 874, 940, 1008, 1078, 1150, 1224, 1300, 1378, 1458, 1540, 1624, 1710, 1798, 1888, 1980, 2074, 2170, 2268, 2368, 2470, 2574, 2680, 2788, 2898, 3010, 3124, 3240, 3358, 3478
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 26, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=28, a(2)=58; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(27)/27 = A001008(27)/A102928(27) = 312536252003/2168462696400, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/27 - 57128792093/2168462696400. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(14 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(28 + x).
a(n) = 2*A132756(n). (End)

A164004 Zero together with row 4 of the array in A163280.

Original entry on oeis.org

0, 5, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164004 := proc(n) if n = 0 then 0; else A163280(4,n) ; fi; end: seq(A164004(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 5}, Table[n*(n + 3), {n, 2, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 -3*x^2 +5*x -5)/(x-1)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjectures from Colin Barker, Apr 07 2015: (Start)
a(n) = n*(3+n) = A028552(n) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: x*(x^3 - 3*x^2 + 5*x - 5) / (x-1)^3. (End)
E.g.f.: x*(x+4)*exp(x) + x. - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009

A276617 Square array A(n,k) = A276955(n,k)/k!, read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 1, 3, 1, 4, 4, 1, 5, 6, 5, 1, 6, 8, 7, 7, 1, 7, 10, 9, 13, 9, 1, 8, 12, 11, 21, 16, 10, 1, 9, 14, 13, 31, 25, 18, 11, 1, 10, 16, 15, 43, 36, 28, 19, 13, 1, 11, 18, 17, 57, 49, 40, 29, 25, 15, 1, 12, 20, 19, 73, 64, 54, 41, 41, 28, 16, 1, 13, 22, 21, 91, 81, 70, 55, 61, 45, 30, 17, 1, 14, 24, 23, 111, 100, 88, 71, 85, 66, 48, 31, 18
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Examples

			The top left corner of the array:
1,  1,  1,  1,  1,  1,  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1
3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13,  14,  15,  16,  17,  18,  19
4,  6,  8, 10, 12, 14, 16,  18,  20,  22,  24,  26,  28,  30,  32,  34,  36
5,  7,  9, 11, 13, 15, 17,  19,  21,  23,  25,  27,  29,  31,  33,  35,  37
7, 13, 21, 31, 43, 57, 73,  91, 111, 133, 157, 183, 211, 241, 273, 307, 343
9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361
		

Crossrefs

Transpose: A276616.
Columns 1-3: A273670, A276931, A276934.
Row 1: A000012, Row 2: n+2, Row 3: 2n+2, Row 4: 2n+3 (for n >= 1).
Row 5: A002061 (from a(3)=7 onward).
Row 6: squares (A000290, from a(3)=9 onward).
Row 7: A028552 (from a(2)=10 onward).
Row 8: A028387 (from a(2)=11 onward).

Programs

Formula

A(n,k) = A276955(n,k)/k!

A371077 Square array read by ascending antidiagonals: A(n, k) = 3^n*Pochhammer(k/3, n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 28, 10, 3, 1, 0, 280, 80, 18, 4, 1, 0, 3640, 880, 162, 28, 5, 1, 0, 58240, 12320, 1944, 280, 40, 6, 1, 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1, 0, 24344320, 4188800, 524880, 58240, 6160, 648, 70, 8, 1
Offset: 0

Views

Author

Werner Schulte and Peter Luschny, Mar 10 2024

Keywords

Examples

			The array starts:
  [0] 1,    1,     1,     1,     1,      1,      1,      1,      1, ...
  [1] 0,    1,     2,     3,     4,      5,      6,      7,      8, ...
  [2] 0,    4,    10,    18,    28,     40,     54,     70,     88, ...
  [3] 0,   28,    80,   162,   280,    440,    648,    910,   1232, ...
  [4] 0,  280,   880,  1944,  3640,   6160,   9720,  14560,  20944, ...
  [5] 0, 3640, 12320, 29160, 58240, 104720, 174960, 276640, 418880, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0,       1;
  [2] 0,       1,      1;
  [3] 0,       4,      2,     1;
  [4] 0,      28,     10,     3,    1;
  [5] 0,     280,     80,    18,    4,   1;
  [6] 0,    3640,    880,   162,   28,   5,  1;
  [7] 0,   58240,  12320,  1944,  280,  40,  6, 1;
  [8] 0, 1106560, 209440, 29160, 3640, 440, 54, 7, 1;
.
Illustrating the LU decomposition of A:
    / 1                \   / 1 1 1 1 1 ... \   / 1   1   1    1    1 ... \
    | 0   1            |   |   1 2 3 4 ... |   | 0   1   2    3    4 ... |
    | 0   4   2        | * |     1 3 6 ... | = | 0   4  10   18   28 ... |
    | 0  28  24   6    |   |       1 4 ... |   | 0  28  80  162  280 ... |
    | 0 280 320 144 24 |   |         1 ... |   | 0 280 880 1944 3640 ... |
    | . . .            |   | . . .         |   | . . .                   |
		

Crossrefs

Family m^n*Pochhammer(k/m, n): A094587 (m=1), A370419 (m=2), this sequence (m=3), A370915 (m=4).
Cf. A303486 (main diagonal), A371079 (row sums of triangle), A371076, A371080.

Programs

  • Maple
    A := (n, k) -> 3^n*pochhammer(k/3, n):
    A := (n, k) -> local j; mul(3*j + k, j = 0..n-1):
    # Read by antidiagonals:
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    seq(lprint([n], seq(T(n, k), k = 0..n)), n = 0..9);
    # Using the generating polynomials of the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-3)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..9)), n = 0..5);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 3*x)^(-k/3);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint([k], EGFcol(k, 8)), k = 0..6);
    # As a matrix product:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371076(n - 1,  k - 1)):
    U := Matrix(7, 7, (n, k) -> binomial(n - 1, k - 1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    Table[3^(n-k)*Pochhammer[k/3, n-k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Mar 14 2024 *)
  • SageMath
    def A(n, k): return 3**n * rising_factorial(k/3, n)
    def A(n, k): return (-3)**n * falling_factorial(-k/3, n)

Formula

A(n, k) = Product_{j=0..n-1} (3*j + k).
A(n, k) = A(n+1, k-3) / (k - 3) for k > 3.
A(n, k) = Sum_{j=0..n} Stirling1(n, j)*(-3)^(n - j)* k^j.
A(n, k) = k! * [x^k] (exp(x) * p(n, x)), where p(n, x) are the row polynomials of A371080.
E.g.f. of column k: (1 - 3*t)^(-k/3).
E.g.f. of row n: exp(x) * (Sum_{k=0..n} A371076(n, k) * x^k / (k!)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n / (n!) = 1/(1 - x/(1 - 3*t)^(1/3)).
Sum_{n>=0, k>=0} A(n, k) * x^k * t^n /(n! * k!) = exp(x/(1 - 3*t)^(1/3)).
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371076, i.e., A(n, k) = Sum_{i=0..k} A371076(n, i) * binomial(k, i).

A156798 a(n) = n^4 + 5*n^2 + 4.

Original entry on oeis.org

4, 10, 40, 130, 340, 754, 1480, 2650, 4420, 6970, 10504, 15250, 21460, 29410, 39400, 51754, 66820, 84970, 106600, 132130, 162004, 196690, 236680, 282490, 334660, 393754, 460360, 535090, 618580, 711490, 814504, 928330, 1053700, 1191370
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n^4+5*n^2+4: n in [0..50]];
    
  • Mathematica
    Table[n^4+5n^2+4, {n,0,40}]
  • PARI
    a(n)=n^4+5*n^2+4
    
  • Sage
    [(n^2 +1)*(n^2 +4) for n in (0..50)] # G. C. Greubel, Jun 10 2021

Formula

a(n) = A002522(n)*A087475(n) = A000290(n) + A000290(A059100(n)) = A028552(A002522(n)).
a(n) = (n^2 + 1)*(n^2 + 4) = n^2 + (n^2 + 2)^2.
G.f.: 2*(2 -5*x +15*x^2 -5*x^3 +5*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; corrected by R. J. Mathar, Sep 16 2009
a(0)=4, a(1)=10, a(2)=40, a(3)=130, a(4)=340, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, May 04 2011
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/8 - Pi*tanh(Pi)/24.
Sum_{n>=0} (-1)^n/a(n) = 1/8 + Pi*csch(Pi)/6 - Pi*csch(Pi)*sech(Pi)/24. (End)
E.g.f.: (4 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - G. C. Greubel, Jun 10 2021

A132770 a(n) = n*(n + 28).

Original entry on oeis.org

0, 29, 60, 93, 128, 165, 204, 245, 288, 333, 380, 429, 480, 533, 588, 645, 704, 765, 828, 893, 960, 1029, 1100, 1173, 1248, 1325, 1404, 1485, 1568, 1653, 1740, 1829, 1920, 2013, 2108, 2205, 2304, 2405, 2508, 2613, 2720, 2829, 2940, 3053, 3168, 3285, 3404, 3525
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 27, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(28)/28 = A001008(28)/A102928(28) = 315404588903/2248776129600, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7751493599/321253732800. (End)
G.f.: x*(29 - 27*x)/(1-x)^3. - Harvey P. Dale, Aug 03 2021
E.g.f.: x*(29 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132771 a(n) = n*(n + 29).

Original entry on oeis.org

0, 30, 62, 96, 132, 170, 210, 252, 296, 342, 390, 440, 492, 546, 602, 660, 720, 782, 846, 912, 980, 1050, 1122, 1196, 1272, 1350, 1430, 1512, 1596, 1682, 1770, 1860, 1952, 2046, 2142, 2240, 2340, 2442, 2546, 2652, 2760, 2870, 2982, 3096, 3212, 3330, 3450, 3572
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 28 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(29)/29 = A001008(29)/A102928(29) = 9227046511387/67543597321200, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/29 - 236266661971/9649085331600. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: 2*(15*x - 14*x^2)/(1-x)^3.
E.g.f.: x*(30 + x)*exp(x). (End)

A163257 An interspersion: the order array of the even-numbered columns (after swapping the first two rows) of the double interspersion at A161179.

Original entry on oeis.org

1, 5, 2, 11, 6, 3, 19, 12, 8, 4, 29, 20, 15, 10, 7, 41, 30, 24, 18, 14, 9, 55, 42, 35, 28, 23, 17, 13, 71, 56, 48, 40, 34, 27, 22, 16, 89, 72, 63, 54, 47, 39, 33, 26, 21, 109, 90, 80, 70, 62, 53, 46, 38, 32, 25, 131, 110, 99, 88, 79, 69, 61, 52, 45, 37, 31, 155, 132, 120, 108
Offset: 1

Views

Author

Clark Kimberling, Jul 24 2009

Keywords

Comments

A permutation of the natural numbers.
Beginning at row 6, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1.
Except for initial terms, the first seven rows are A028387, A002378, A005563, A028552, A008865, A014209, A028873, and the first column, A004652.

Examples

			Corner:
1....5...11...19
2....6...12...20
3....8...15...24
4...10...18...28
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the odd-numbered columns and then swap rows 1 and 2, leaving
3....11...23...39
4....12...24...40
6....16...30...48
10...22...38...58
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Four cases:
S(1,k)=k^2+k-1
S(2,k)=k^2+k
if n>1 is odd, then S(n,k)=k^2+(n-1)k+(n-1)(n-3)/4
if n>2 is even, then S(n,k)= k^2+(n-1)k+n(n-4)/4.

A185878 Accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 11, 10, 3, 24, 28, 18, 4, 45, 60, 51, 28, 5, 76, 110, 108, 80, 40, 6, 119, 182, 195, 168, 115, 54, 7, 176, 280, 318, 300, 240, 156, 70, 8, 249, 408, 483, 484, 425, 324, 203, 88, 9, 340, 570, 696, 728, 680, 570, 420, 256, 108, 10, 451, 770, 963, 1040, 1015, 906, 735, 528, 315, 130, 11, 584, 1012, 1290, 1428, 1440, 1344, 1162, 920, 648, 380, 154, 12
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ...
See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
  1,  4, 11,  24,  45, ...
  2, 10, 28,  60, 110, ...
  3, 18, 51, 108, 195, ...
  4, 28, 80, 168, 300, ...
  ...
		

Crossrefs

Row 1 to 3: A006527, A006331, A064043.
Column 1 to 5: A000027, A028552, A140677, 12*A000096, 5*A130861.

Programs

  • Mathematica
    f[n_, k_] := k*n*(2*k^2 - 3*k + 3*k*n - 3*n + 7)/6; Table[f[n - k + 1, k], {n,10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = k*n*(2*k^2 -3*k +3*k*n -3*n +7)/6, k>=1, n>=1.

A198148 a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.

Original entry on oeis.org

0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
Offset: 0

Views

Author

Paul Curtz, Oct 21 2011

Keywords

Comments

See, in A181318(n), A060819(n)*A060819(n+p): A060819(n)^2, A064038(n), a(n), A160050(n), A061037(n), A178242(n). The second differences a(n+2)-2*a(n+1)+a(n) = -5, 16, -26, 44, -61, 86, -110, 142, -173, 212, -250, 296, -341, 394, -446, 506, taken modulo 9 are periodic with the palindromic period 4, 7, 1, 8, 2, 5, 7, 7, 7, 5, 2, 8, 1, 7, 4.

Crossrefs

Programs

Formula

a(n) = A060819(n)*A060819(n+2).
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
a(n) = A142705(n) / A000034(n+1).
a(n) = A005563(n) / A010689(n+1). - Franklin T. Adams-Watters, Oct 21 2011
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n)*a(n+1) = a(A028552(n)) = A050534(n+2). - Bruno Berselli, Oct 26 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022
Previous Showing 21-30 of 64 results. Next