cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A347672 Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of Baxter matrices of size n X k.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 14, 14, 1, 1, 24, 69, 24, 1, 1, 36, 203, 203, 36, 1, 1, 50, 463, 972, 463, 50, 1, 1, 66, 903, 3324, 3324, 903, 66, 1, 1, 84, 1585, 9074, 16355, 9074, 1585, 84, 1, 1, 104, 2579, 21168, 61267, 61267, 21168, 2579, 104, 1, 1, 126, 3963, 44028, 188153, 306352, 188153, 44028, 3963, 126, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2021

Keywords

Examples

			The array begins:
1,1,1,1,1,1,1, ...
1,6,14,24,36,50,66, ...
1,14,69,203,463,903,1585, ...
1,24,203,972,3324,9074,21168, ...
1,36,463,3324,16355,61267,188153, ...
1,50,903,9074,61267,306352,1219598, ...
1,66,1585,21168,188153,1219598,6175181, ...
...
The first few antidiagonals are:
1,
1,1,
1,6,1,
1,14,14,1,
1,24,69,24,1,
1,36,203,203,36,1,
1,50,463,972,463,50,1,
1,66,903,3324,3324,903,66,1,
1,84,1585,9074,16355,9074,1585,84,1,
...
		

Crossrefs

Row 2 is A028557, row 3 is A347673, main diagonal is A347674.

Extensions

a(25) corrected by and a(46)-a(66) from Michael S. Branicky, Sep 14 2021

A020739 a(n) = 2*n + 6.

Original entry on oeis.org

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138
Offset: 0

Views

Author

Keywords

Comments

Pisot sequence T(6,8).
Trivial case of a Pisot sequence satisfying a simple linear recurrence. Here, since round((2*n+2)^2/(2*n)^2) = 2*n + round((n+1)/n^2) = 2*n for n > 2, a(n) is even and a(n) = a(n-1) + 2. - Ralf Stephan, Sep 03 2013

Crossrefs

Subsequence of A005843. See A008776 for definitions of Pisot sequences.

Programs

  • Mathematica
    2*Range[0,70]+6 (* or *) Range[6,138,2] (* Harvey P. Dale, Apr 24 2017 *)

Formula

a(n) = 2*a(n-1) - a(n-2).
From Elmo R. Oliveira, Oct 30 2024: (Start)
G.f.: 2*(3 - 2*x)/(1 - x)^2.
E.g.f.: 2*exp(x)*(3 + x).
a(n) = 2*A009056(n+1) = A028557(n+1) - A028557(n). (End)

Extensions

Better name from Ralf Stephan, Sep 03 2013

A116351 Numbers k such that k*(k+5) gives the concatenation of two numbers m and m+9.

Original entry on oeis.org

8446, 8811, 69125298546226023972, 69855225553525294045, 74604750601020544520, 75334677608319814593, 92496418993920707747, 93226346001219977820, 97975871048715228295, 98705798056014498368
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Examples

			8811 * 8816 = 7767//7776, where // denotes concatenation.
		

Crossrefs

A132770 a(n) = n*(n + 28).

Original entry on oeis.org

0, 29, 60, 93, 128, 165, 204, 245, 288, 333, 380, 429, 480, 533, 588, 645, 704, 765, 828, 893, 960, 1029, 1100, 1173, 1248, 1325, 1404, 1485, 1568, 1653, 1740, 1829, 1920, 2013, 2108, 2205, 2304, 2405, 2508, 2613, 2720, 2829, 2940, 3053, 3168, 3285, 3404, 3525
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 27, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(28)/28 = A001008(28)/A102928(28) = 315404588903/2248776129600, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7751493599/321253732800. (End)
G.f.: x*(29 - 27*x)/(1-x)^3. - Harvey P. Dale, Aug 03 2021
E.g.f.: x*(29 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132771 a(n) = n*(n + 29).

Original entry on oeis.org

0, 30, 62, 96, 132, 170, 210, 252, 296, 342, 390, 440, 492, 546, 602, 660, 720, 782, 846, 912, 980, 1050, 1122, 1196, 1272, 1350, 1430, 1512, 1596, 1682, 1770, 1860, 1952, 2046, 2142, 2240, 2340, 2442, 2546, 2652, 2760, 2870, 2982, 3096, 3212, 3330, 3450, 3572
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 28 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(29)/29 = A001008(29)/A102928(29) = 9227046511387/67543597321200, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/29 - 236266661971/9649085331600. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: 2*(15*x - 14*x^2)/(1-x)^3.
E.g.f.: x*(30 + x)*exp(x). (End)

A132772 a(n) = n*(n + 30).

Original entry on oeis.org

0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 400, 451, 504, 559, 616, 675, 736, 799, 864, 931, 1000, 1071, 1144, 1219, 1296, 1375, 1456, 1539, 1624, 1711, 1800, 1891, 1984, 2079, 2176, 2275, 2376, 2479, 2584, 2691, 2800, 2911, 3024, 3139, 3256, 3375, 3496, 3619
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: x*(31-29*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 29 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=31, a(2)=64, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 06 2015
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(30)/30 = A001008(30)/A102928(30) = 9304682830147/69872686884000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 225175759291/9981812412000. (End)
E.g.f.: x*(31 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A249013 a(n) = floor( (n-1) * (n+4) / 10 ).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 6, 8, 10, 12, 15, 17, 20, 23, 26, 30, 33, 37, 41, 45, 50, 54, 59, 64, 69, 75, 80, 86, 92, 98, 105, 111, 118, 125, 132, 140, 147, 155, 163, 171, 180, 188, 197, 206, 215, 225, 234, 244, 254, 264, 275, 285, 296, 307, 318, 330, 341, 353, 365
Offset: 1

Views

Author

Michael Somos, Oct 19 2014

Keywords

Comments

A028557(n) without the least significant digit. - R. J. Mathar, Aug 11 2021

Examples

			G.f. = x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 8*x^8 + 10*x^9 + 12*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [Floor((n-1)*(n+4)/10): n in [1..60]]; // Vincenzo Librandi, Jan 10 2015
  • Mathematica
    a[ n_] := Quotient[ (n - 1) (n + 4), 10];
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 0, 1, 2, 3, 5, 6}, 60] (* or *) CoefficientList[Series[x^2 (1 + x^3 - x^4) / ((1 - x)^2 (1 - x^5)), {x, 0, 60}], x] (* Vincenzo Librandi, Jan 10 2015 *)
  • PARI
    {a(n) = (n-1) * (n+4) \ 10};
    
  • PARI
    {a(n) = if( n<-1, n = -3-n); -(n<1) + polcoeff( x^3*(1 + x^3 - x^4) / ((1 - x)^2 * (1 - x^5)) + x * O(x^n), n)};
    

Formula

G.f.: x^3 * (1 + x^3 - x^4) / ((1 - x)^2 * (1 - x^5)) = x^3*(1+x^3-x^4)/ ( (1-x)^3*(1+x+x^2+x^3+x^4)).
a(n) = a(-3-n) for all n in Z.
a(n) = a(n-5) + n-1 for all n in Z.
a(n) + a(n+4) = min( a(n+1) + a(n+3), a(n+2) + a(n+2) ) + 1 for all n in Z.
A249020(n) = a(n+1) + 1 for all n in Z. - Michael Somos, Jan 09 2015

A104675 a(n) = C(n+1,n) * C(n+6,1).

Original entry on oeis.org

6, 14, 24, 36, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(0+1,0+0) * C(0+6,1) = C(1,0) * C(6,1) = 1*6 = 6.
If n=5 then C(5+1,5+0) * C(5+6,1) = C(6,5) * C(11,1) = 6*11 = 66.
		

Crossrefs

Programs

  • Magma
    [(n+1)*(n+6): n in [0..50]]; // G. C. Greubel, Mar 01 2025
  • Mathematica
    Table[Binomial[n + 1, n] Binomial[n + 6, 1], {n, 0, 48}] (* or *)
    CoefficientList[Series[2 (3 - 2 x)/(1 - x)^3, {x, 0, 49}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {6, 14, 24}, 49] (* Michael De Vlieger, Apr 06 2017 *)
  • PARI
    Vec(2*(3 - 2*x) / (1 - x)^3 + O(x^80)) \\ Colin Barker, Apr 06 2017
    
  • PARI
    a(n)=(n+6)*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Python
    from sympy import binomial
    def a(n): return binomial(n + 1, n) * binomial(n + 6, 1) # Indranil Ghosh, Apr 06 2017
    

Formula

a(n) = (n+1)*(n+6) = A028557(n+1). - R. J. Mathar, May 19 2008
a(n) = 2*n + a(n-1) + 6 (with a(0)=6). Vincenzo Librandi, Nov 13 2010
From Colin Barker, Apr 06 2017: (Start)
G.f.: 2*(3 - 2*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
E.g.f.: exp(x)*(x^2 + 8x + 6). - Indranil Ghosh, Apr 06 2017
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 137/300.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2)/5 - 47/300. (End)

A028559 Palindromes of the form k*(k+5).

Original entry on oeis.org

0, 6, 66, 414, 696, 41814, 42224, 666666, 4282824, 4754574, 4881884, 416343614, 630939036, 4159669514, 6817557186, 42877777824, 4163250523614, 4783601063874, 4986733376894, 47431877813474, 6333914444193336, 44653247574235644, 62141509790514126
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def agen():
        for k in count(0):
            if ispal(k*(k+5)):
                yield k*(k+5)
    print(list(islice(agen(), 20))) # Michael S. Branicky, Jan 30 2022

Formula

a(n) = A028558(n) * (A028558(n) + 5). - Michael S. Branicky, Jan 30 2022

Extensions

a(21) and beyond from Michael S. Branicky, Jan 30 2022

A091435 Array T(n,k) = n*(n+k), read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
Offset: 0

Views

Author

Ross La Haye, Mar 02 2004

Keywords

Examples

			Table begins
   0;
   1,  0;
   4,  2,  0;
   9,  6,  3,  0;
  16, 12,  8,  4,  0;
  25, 20, 15, 10,  5,  0;
  36, 30, 24, 18, 12,  6,  0;
  ...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
		

Crossrefs

Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.

Programs

  • GAP
    Flat(List([0..11],j->List([0..j],i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
  • Maple
    seq(seq((j-i)*j,i=0..j),j=0..14);
  • Mathematica
    Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)

Formula

G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004

Extensions

More terms from Emeric Deutsch, Mar 15 2004
Previous Showing 21-30 of 34 results. Next