cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A094728 Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).

Examples

			n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
   1;
   4,  3;
   9,  8,  5;
  16, 15, 12,  7;
  25, 24, 21, 16,  9;
  36, 35, 32, 27, 20, 11;
  49, 48, 45, 40, 33, 24, 13;
  64, 63, 60, 55, 48, 39, 28, 15;
  81, 80, 77, 72, 65, 56, 45, 32, 17;
  ... etc. - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Magma
    [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • SageMath
    flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024

Formula

Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
G.f.: x*(1 - 3*x^2*y + x*(1 + y))/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, Aug 04 2025

A132762 a(n) = n*(n + 19).

Original entry on oeis.org

0, 20, 42, 66, 92, 120, 150, 182, 216, 252, 290, 330, 372, 416, 462, 510, 560, 612, 666, 722, 780, 840, 902, 966, 1032, 1100, 1170, 1242, 1316, 1392, 1470, 1550, 1632, 1716, 1802, 1890, 1980, 2072, 2166, 2262, 2360, 2460, 2562, 2666, 2772, 2880, 2990, 3102, 3216
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 18 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(10 - 9*x)/(1-x)^3. (End)
a(n) = 2*A051942(n+9). - R. J. Mathar, Sep 05 2018
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(19)/19 = A001008(19)/A102928(19) = 275295799/1474352880, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/19 - 33464927/884611728. (End)
E.g.f.: x*(20 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132764 a(n) = n*(n+22).

Original entry on oeis.org

0, 23, 48, 75, 104, 135, 168, 203, 240, 279, 320, 363, 408, 455, 504, 555, 608, 663, 720, 779, 840, 903, 968, 1035, 1104, 1175, 1248, 1323, 1400, 1479, 1560, 1643, 1728, 1815, 1904, 1995, 2088, 2183, 2280, 2379, 2480, 2583, 2688, 2795, 2904, 3015, 3128, 3243, 3360
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Examples

			a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = n*(n + 22).
a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 02 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: x*(23 - 21*x)/(1-x)^3.
E.g.f.: x*(23 + x)*exp(x). (End)

A140681 a(n) = 3*n*(n+6).

Original entry on oeis.org

0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, 561, 648, 741, 840, 945, 1056, 1173, 1296, 1425, 1560, 1701, 1848, 2001, 2160, 2325, 2496, 2673, 2856, 3045, 3240, 3441, 3648, 3861, 4080, 4305, 4536, 4773, 5016, 5265, 5520, 5781
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A028560(n)*3 = 3*n^2 + 18*n = n*(3*n+18).
a(n) = 6*n + a(n-1) + 15 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
from G. C. Greubel, Jul 20 2017: (Start)
G.f.: 3*x*(7 - 5*x)/(1-x)^3.
E.g.f.: 3*x*(x+7)*exp(x). (End)
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 49/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/1080. (End)

A132763 a(n) = n*(n+21).

Original entry on oeis.org

0, 22, 46, 72, 100, 130, 162, 196, 232, 270, 310, 352, 396, 442, 490, 540, 592, 646, 702, 760, 820, 882, 946, 1012, 1080, 1150, 1222, 1296, 1372, 1450, 1530, 1612, 1696, 1782, 1870, 1960, 2052, 2146, 2242, 2340, 2440, 2542, 2646, 2752, 2860, 2970, 3082, 3196, 3312
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 21).
a(n) = 2*n + a(n-1) + 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=22, a(2)=46, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 25 2014
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(21)/21 = A001008(21)/A102928(21) = 18858053/108636528, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/21 - 166770367/4888643760. (End)
From Stefano Spezia, Jan 30 2021: (Start)
O.g.f.: 2*x*(11 - 10*x)/(1 - x)^3.
E.g.f.: x*(22 + x)*exp(x). (End)

A132766 a(n) = n*(n+24).

Original entry on oeis.org

0, 25, 52, 81, 112, 145, 180, 217, 256, 297, 340, 385, 432, 481, 532, 585, 640, 697, 756, 817, 880, 945, 1012, 1081, 1152, 1225, 1300, 1377, 1456, 1537, 1620, 1705, 1792, 1881, 1972, 2065, 2160, 2257, 2356, 2457, 2560, 2665, 2772, 2881, 2992, 3105, 3220, 3337
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (n + 24), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 25, 52}, 50] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    a(n)=n*(n+24) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(n+24) for n in (0..50)] # G. C. Greubel, Mar 14 2022

Formula

a(n) = n*(n + 24).
a(n) = 2*n + a(n-1) + 23 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=25, a(2)=52; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 11 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(24)/24 = A001008(24)/A102928(24) = 1347822955/8566766208, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3602044091/128501493120. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: 2*x*(13 - 12*x)/(1-x)^3.
E.g.f.: x*(26 + x)*exp(x). (End)

A132767 a(n) = n*(n + 25).

Original entry on oeis.org

0, 26, 54, 84, 116, 150, 186, 224, 264, 306, 350, 396, 444, 494, 546, 600, 656, 714, 774, 836, 900, 966, 1034, 1104, 1176, 1250, 1326, 1404, 1484, 1566, 1650, 1736, 1824, 1914, 2006, 2100, 2196, 2294, 2394, 2496, 2600, 2706, 2814, 2924, 3036, 3150, 3266, 3384
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the Zagreb 1 index of the Mycielskian of the cycle graph C[n]. See p. 205 of the D. B. West reference. - Emeric Deutsch, Nov 04 2016

References

  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = n^2 + 25*n. - Omar E. Pol, Nov 04 2016
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)
E.g.f.: x*(26 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A067727 a(n) = 7*n^2 + 14*n.

Original entry on oeis.org

21, 56, 105, 168, 245, 336, 441, 560, 693, 840, 1001, 1176, 1365, 1568, 1785, 2016, 2261, 2520, 2793, 3080, 3381, 3696, 4025, 4368, 4725, 5096, 5481, 5880, 6293, 6720, 7161, 7616, 8085, 8568, 9065, 9576, 10101, 10640, 11193, 11760, 12341, 12936
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers k such that 7*(7 + k) is a perfect square.

Crossrefs

Cf. A186029.
Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067726 (k=6), A067724 (k=5), A028347 (k=4), A067725 (k=3), A054000 (k=2), A005563 (k=1).

Programs

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
G.f.: 7*x*(3-x)/(1-x)^3. - Vincenzo Librandi, Jul 08 2012
E.g.f.: 7*x*(3 + x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/28.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/28. (End)

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010

A100345 Triangle read by rows: T(n,k) = n*(n+k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 9, 12, 15, 18, 16, 20, 24, 28, 32, 25, 30, 35, 40, 45, 50, 36, 42, 48, 54, 60, 66, 72, 49, 56, 63, 70, 77, 84, 91, 98, 64, 72, 80, 88, 96, 104, 112, 120, 128, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 18 2004

Keywords

Comments

Distinct members (except 0) are in A071562. Numbers occurring at least twice are in A175040. - Franklin T. Adams-Watters, Apr 04 2010

Examples

			Triangle begins:
   0
   1   2
   4   6   8
   9  12  15  18
  16  20  24  28  32
  25  30  35  40  45  50
  36  42  48  54  60  66  72
  49  56  63  70  77  84  91  98
  64  72  80  88  96 104 112 120 128
		

Crossrefs

Programs

  • Mathematica
    Table[n(n+k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    row(n) = vector(n+1, k, n*(n+k-1)); \\ Amiram Eldar, May 09 2025

Formula

T(n,0) = A000290(n).
T(n,1) = A002378(n) for n > 0.
T(n,2) = A005563(n) for n > 1.
T(n,3) = A028552(n) for n > 2.
T(n,4) = A028347(n+2) for n > 3.
T(n,5) = A028557(n) for n > 4.
T(n,6) = A028560(n) for n > 5.
T(n,7) = A028563(n) for n > 6.
T(n,8) = A028566(n) for n > 7.
T(n,9) = A028569(n) for n > 8.
T(n,10) = A098603(n) for n > 9.
T(n,n-5) = A071355(n-4) for n > 4.
T(n,n-4) = A054000(n-1) for n > 3.
T(n,n-3) = A014107(n) for n > 2.
T(n,n-2) = A046092(n-1) for n > 1.
T(n,n-1) = A000384(n) for n > 0.
T(n,n) = A001105(n).
Row sums give A085789 for n > 0.
G.f.: x*(1 + 2*y + 6*x^3*y^2 - 3*x^2*y*(1 + 2*y) + x*(1 - 3*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 03 2025

A067724 a(n) = 5*n^2 + 10*n.

Original entry on oeis.org

15, 40, 75, 120, 175, 240, 315, 400, 495, 600, 715, 840, 975, 1120, 1275, 1440, 1615, 1800, 1995, 2200, 2415, 2640, 2875, 3120, 3375, 3640, 3915, 4200, 4495, 4800, 5115, 5440, 5775, 6120, 6475, 6840, 7215, 7600, 7995, 8400, 8815, 9240, 9675
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers m such that 5*(5 + m) is a perfect square.

Crossrefs

Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067727 (k=7), A067726 (k=6), A028347 (k=4), A067725 (k=3), A054000 (k=2), A067998 (k=1).
Cf. A055998.

Programs

  • Magma
    [5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
  • Mathematica
    Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &]
    CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *)
    Table[5n^2+10n,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{15,40,75},60] (* Harvey P. Dale, May 22 2018 *)
  • PARI
    a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: 5*x*(3 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A055998(3*n) + A055998(n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/20. (End)
E.g.f.: 5*exp(x)*x*(3 + x). - Stefano Spezia, Oct 01 2023
Previous Showing 11-20 of 41 results. Next