A195015
Main axis of the square spiral whose edges have length A195013 and whose vertices are the numbers A195014.
Original entry on oeis.org
0, 2, 12, 24, 44, 66, 96, 128, 168, 210, 260, 312, 372, 434, 504, 576, 656, 738, 828, 920, 1020, 1122, 1232, 1344, 1464, 1586, 1716, 1848, 1988, 2130, 2280, 2432, 2592, 2754, 2924, 3096, 3276, 3458, 3648, 3840, 4040, 4242, 4452, 4664, 4884
Offset: 0
-
[(2*n*(5*n+2)+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
-
LinearRecurrence[{2, 0, -2, 1}, {0, 2, 12, 24}, 50] (* Paolo Xausa, Feb 09 2024 *)
Original entry on oeis.org
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Cf. similar sequences of the type n*(n+1)*(n+k)/2:
A002411 (k=0),
A006002 (k=1),
A027480 (k=2),
A077414 (k=3, with offset 1),
A212343 (k=4, without the initial 0), this sequence (k=5).
-
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
[n*(n+1)*(n+5)/2 for n in (0..50)]
A195016
a(n) = (n*(5*n+7)-(-1)^n+1)/2.
Original entry on oeis.org
0, 7, 17, 34, 54, 81, 111, 148, 188, 235, 285, 342, 402, 469, 539, 616, 696, 783, 873, 970, 1070, 1177, 1287, 1404, 1524, 1651, 1781, 1918, 2058, 2205, 2355, 2512, 2672, 2839, 3009, 3186, 3366, 3553, 3743, 3940, 4140, 4347, 4557, 4774, 4994
Offset: 0
-
&cat[[n*t,(n+1)*t] where t is 10*n+7: n in [0..22]]; // Bruno Berselli, Oct 14 2011
-
LinearRecurrence[{2, 0, -2, 1}, {0, 7, 17, 34}, 50] (* Paolo Xausa, Feb 09 2024 *)
A124110
Primes of the form A124080 (10 times triangular numbers) +- 1.
Original entry on oeis.org
11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, 1049, 1051, 1201, 1361, 1531, 1709, 1901, 2099, 2309, 2311, 2531, 2999, 3001, 3251, 3511, 3779, 4349, 4649, 4651, 5279, 5281, 6299, 6301, 6659, 6661, 7411, 8609, 9029, 9461, 9901, 11279
Offset: 1
a(1) = A124080(1)+1 = (10*T(1)) - 1 = 10*(1*(1+1)/2) + 1 = 10+1 = 11 is prime.
a(2) = A124080(2)-1 = (10*T(2))-1 = 10*(2*(2+1)/2) - 1 = 30-1 = 29 is prime.
a(3) = A124080(2)+1 = (10*T(2))+1 = 10*(2*(2+1)/2) + 1 = 30+1 = 31 is prime.
-
s = {}; Do[t = 5n(n + 1); If[PrimeQ[t - 1], AppendTo[s, t - 1]]; If[PrimeQ[t + 1], AppendTo[s, t + 1]], {n, 47}]; s (* Robert G. Wilson v *)
A238738
Expansion of (1 + 2*x + 2*x^2)/(1 - x - 2*x^3 + 2*x^4 + x^6 - x^7).
Original entry on oeis.org
1, 3, 5, 7, 11, 15, 18, 24, 30, 34, 42, 50, 55, 65, 75, 81, 93, 105, 112, 126, 140, 148, 164, 180, 189, 207, 225, 235, 255, 275, 286, 308, 330, 342, 366, 390, 403, 429, 455, 469, 497, 525, 540, 570, 600, 616, 648, 680, 697, 731, 765, 783, 819, 855, 874
Offset: 0
G.f.: 1 + 3*x + 5*x^2 + 7*x^3 + 11*x^4 + 15*x^5 + 18*x^6 + 24*x^7 + ...
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Bruno Berselli, Illustration of the initial terms.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
-
m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)));
-
CoefficientList[Series[(1 + 2 x + 2 x^2)/(1 - x - 2 x^3 + 2 x^4 + x^6 - x^7), {x, 0, 60}], x]
-
makelist(coeff(taylor((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7), x, 0, n), x, n), n, 0, 60);
-
Vec((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)+O(x^60))
-
m = 60; L. = PowerSeriesRing(ZZ, m); f = (1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7); print(f.coefficients())
A269457
a(n) = 5*(n + 1)*(n + 4)/2.
Original entry on oeis.org
10, 25, 45, 70, 100, 135, 175, 220, 270, 325, 385, 450, 520, 595, 675, 760, 850, 945, 1045, 1150, 1260, 1375, 1495, 1620, 1750, 1885, 2025, 2170, 2320, 2475, 2635, 2800, 2970, 3145, 3325, 3510, 3700, 3895, 4095, 4300, 4510, 4725, 4945, 5170, 5400, 5635
Offset: 0
a(0) = 0 + 1 + 2 + 3 + 4 = 10;
a(1) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 = 25;
a(2) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 45, etc.
-
[5*(n+1)*(n+4)/2: n in [0..50]]; // Vincenzo Librandi, Feb 28 2016
-
Table[5 (n + 1) ((n + 4)/2), {n, 0, 45}]
Table[Sum[5 (k + 2), {k, 0, n}], {n, 0, 45}]
LinearRecurrence[{3, -3, 1}, {10, 25, 45}, 46]
-
a(n) = 5*(n + 1)*(n + 4)/2; \\ Michel Marcus, Feb 29 2016
-
Vec(5*(2-x)/(1-x)^3 + O(x^100)) \\ Altug Alkan, Mar 04 2016
A360176
Triangle read by rows. T(n, k) = Sum_{j=k..n} binomial(n, j) * (-j)^(n - j) * (-1)^(j - k)* A360177(j, k).
Original entry on oeis.org
1, 0, 1, 0, -5, 1, 0, 37, -15, 1, 0, -393, 223, -30, 1, 0, 5481, -3815, 745, -50, 1, 0, -95053, 76051, -18870, 1865, -75, 1, 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1, 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, -5, 1;
[3] 0, 37, -15, 1;
[4] 0, -393, 223, -30, 1;
[5] 0, 5481, -3815, 745, -50, 1;
[6] 0, -95053, 76051, -18870, 1865, -75, 1;
[7] 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1;
[8] 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1;
-
T := (n, k) -> add(binomial(n, j) * (-j)^(n - j) * (-1)^(j - k) * A360177(j, k), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
# Alternative:
egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!:
ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od;
A086922
Number of idempotent n X n (0,1) matrices over the reals.
Original entry on oeis.org
1, 2, 8, 50, 452, 5682, 96608, 2185738, 65108492
Offset: 0
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003
Original entry on oeis.org
0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).
-
A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
-
concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019
A342381
Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0
Table begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1
1 | 1 1
2 | 5 2 1
3 | 29 15 3 1
4 | 233 116 30 4 1
5 | 2329 1165 290 50 5 1
6 | 27949 13974 3495 580 75 6 1
7 | 391285 195643 48909 8155 1015 105 7 1
8 | 6260561 3130280 782572 130424 16310 1624 140 8 1
9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
2
+---+
3| |1;
+---+
4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
4 2
+---+ +---+
3| |1 and 1| |3;
+---+ +---+
2 4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
1 4 3 3 1
+---+ +---+ +---+ +---+ +---+
2| |4, 1| |3, 4| |2, 2| |4, and 4| |2.
+---+ +---+ +---+ +---+ +---+
3 2 1 1 3
-
f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021
Comments