cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A195015 Main axis of the square spiral whose edges have length A195013 and whose vertices are the numbers A195014.

Original entry on oeis.org

0, 2, 12, 24, 44, 66, 96, 128, 168, 210, 260, 312, 372, 434, 504, 576, 656, 738, 828, 920, 1020, 1122, 1232, 1344, 1464, 1586, 1716, 1848, 1988, 2130, 2280, 2432, 2592, 2754, 2924, 3096, 3276, 3458, 3648, 3840, 4040, 4242, 4452, 4664, 4884
Offset: 0

Views

Author

Omar E. Pol, Sep 26 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., and the same line from 0, in the direction 0, 12, ..., in the square spiral mentioned above. Axis perpendicular to A195016 in the same spiral.
Also four times A005475 and positives A152965 interleaved.

Crossrefs

Programs

  • Magma
    [(2*n*(5*n+2)+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 2, 12, 24}, 50] (* Paolo Xausa, Feb 09 2024 *)

Formula

From Bruno Berselli, Oct 14 2011: (Start)
G.f.: 2*x*(1+4*x)/((1+x)*(1-x)^3).
a(n) = (2*n*(5*n+2) + 3*(-1)^n-3)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) + a(n-1) = A135706(n). (End)

A267370 Partial sums of A140091.

Original entry on oeis.org

0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0

Views

Author

Bruno Berselli, Jan 13 2016

Keywords

Comments

After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.

Examples

			The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
.  0;
.  1,  5;
.  4,  7, 10;
.  9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
		

Crossrefs

Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).

Programs

  • Magma
    [n*(n+1)*(n+5)/2: n in [0..50]];
  • Mathematica
    Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
    LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(n+5)/2)
    
  • Sage
    [n*(n+1)*(n+5)/2 for n in (0..50)]
    

Formula

O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)

A195016 a(n) = (n*(5*n+7)-(-1)^n+1)/2.

Original entry on oeis.org

0, 7, 17, 34, 54, 81, 111, 148, 188, 235, 285, 342, 402, 469, 539, 616, 696, 783, 873, 970, 1070, 1177, 1287, 1404, 1524, 1651, 1781, 1918, 2058, 2205, 2355, 2512, 2672, 2839, 3009, 3186, 3366, 3553, 3743, 3940, 4140, 4347, 4557, 4774, 4994
Offset: 0

Views

Author

Omar E. Pol, Sep 26 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,..., and the same line from 0, in the direction 0, 17,..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. Axis perpendicular to the main axis A195015 in the same spiral.
Also sequence found by reading the line from 0, in the direction 0, 7,..., and the same line from 0, in the direction 0, 17,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This line is parallel to A153126 in the same spiral.

Crossrefs

Programs

  • Magma
    &cat[[n*t,(n+1)*t] where t is 10*n+7: n in [0..22]]; // Bruno Berselli, Oct 14 2011
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 7, 17, 34}, 50] (* Paolo Xausa, Feb 09 2024 *)

Formula

n*(10*n-3), if n >= 1, and (2*n+1)*(5*n+1)-1, if n >= 0, interleaved.
G.f.: x*(7+3*x)/((1+x)*(1-x)^3). - Bruno Berselli, Oct 14 2011

Extensions

Concise definition by Bruno Berselli, Oct 14 2011

A124110 Primes of the form A124080 (10 times triangular numbers) +- 1.

Original entry on oeis.org

11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, 1049, 1051, 1201, 1361, 1531, 1709, 1901, 2099, 2309, 2311, 2531, 2999, 3001, 3251, 3511, 3779, 4349, 4649, 4651, 5279, 5281, 6299, 6301, 6659, 6661, 7411, 8609, 9029, 9461, 9901, 11279
Offset: 1

Views

Author

Jonathan Vos Post, Nov 26 2006

Keywords

Comments

Numbers j such that A124080(j)-1 is prime or A124080(j)+1 is prime, where repetition means a twin prime, are 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 11, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 24, 24, 25, ..., . - Robert G. Wilson v, Nov 29 2006

Examples

			a(1) = A124080(1)+1 = (10*T(1)) - 1 = 10*(1*(1+1)/2) + 1 = 10+1 = 11 is prime.
a(2) = A124080(2)-1 = (10*T(2))-1 = 10*(2*(2+1)/2) - 1 = 30-1 = 29 is prime.
a(3) = A124080(2)+1 = (10*T(2))+1 = 10*(2*(2+1)/2) + 1 = 30+1 = 31 is prime.
		

Crossrefs

Programs

  • Mathematica
    s = {}; Do[t = 5n(n + 1); If[PrimeQ[t - 1], AppendTo[s, t - 1]]; If[PrimeQ[t + 1], AppendTo[s, t + 1]], {n, 47}]; s (* Robert G. Wilson v *)

Formula

{A124080(j)-1 when prime} U {A124080(j)+1 when prime} = {i = 10*T(j)-1 such that i is prime} U {i = 10*T(j)+1 such that i is prime} where T(j) = A000217(j) = j*(j+1)/2.

Extensions

More terms from Robert G. Wilson v, Nov 29 2006

A238738 Expansion of (1 + 2*x + 2*x^2)/(1 - x - 2*x^3 + 2*x^4 + x^6 - x^7).

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 18, 24, 30, 34, 42, 50, 55, 65, 75, 81, 93, 105, 112, 126, 140, 148, 164, 180, 189, 207, 225, 235, 255, 275, 286, 308, 330, 342, 366, 390, 403, 429, 455, 469, 497, 525, 540, 570, 600, 616, 648, 680, 697, 731, 765, 783, 819, 855, 874
Offset: 0

Views

Author

Bruno Berselli, Mar 04 2014

Keywords

Comments

Subsequence of A008732: a(n) = A008732(A047212(n+1)).
See also Deléham's example in A008732: these numbers are in the first (A000566), third (A005475) and fifth (A028895) column.

Examples

			G.f.: 1 + 3*x + 5*x^2 + 7*x^3 + 11*x^4 + 15*x^5 + 18*x^6 + 24*x^7 + ...
		

Crossrefs

Cf. A000212 (see illustration above), A000217, A008732, A211538.

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)));
    
  • Mathematica
    CoefficientList[Series[(1 + 2 x + 2 x^2)/(1 - x - 2 x^3 + 2 x^4 + x^6 - x^7), {x, 0, 60}], x]
  • Maxima
    makelist(coeff(taylor((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7), x, 0, n), x, n), n, 0, 60);
    
  • PARI
    Vec((1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7)+O(x^60))
    
  • Sage
    m = 60; L. = PowerSeriesRing(ZZ, m); f = (1+2*x+2*x^2)/(1-x-2*x^3+2*x^4+x^6-x^7); print(f.coefficients())

Formula

G.f.: (1 + 2*x + 2*x^2) / ((1 - x)^3*(1 + x + x^2)^2).
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7), with n>6.
a(3k) = k*(5*k + 7)/2 + 1 (A000566);
a(3k+1) = k*(5*k + 11)/2 + 3 (A005475);
a(3k+2) = k*(5*k + 15)/2 + 5 (A028895).
a(n) = (floor(n/3)+1)*(4*n-7*floor(n/3)+2)/2. [Luce ETIENNE, Jun 14 2014]

A269457 a(n) = 5*(n + 1)*(n + 4)/2.

Original entry on oeis.org

10, 25, 45, 70, 100, 135, 175, 220, 270, 325, 385, 450, 520, 595, 675, 760, 850, 945, 1045, 1150, 1260, 1375, 1495, 1620, 1750, 1885, 2025, 2170, 2320, 2475, 2635, 2800, 2970, 3145, 3325, 3510, 3700, 3895, 4095, 4300, 4510, 4725, 4945, 5170, 5400, 5635
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*(n + 1)*(n - 1 + k)/2 is (k*(k - 1)/2 + (k*(3 - k)/2)*x)/(1 - x)^3 (see links section).

Examples

			a(0) = 0 + 1 + 2 + 3 + 4 = 10;
a(1) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 = 25;
a(2) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 45, etc.
		

Crossrefs

Programs

  • Magma
    [5*(n+1)*(n+4)/2: n in [0..50]]; // Vincenzo Librandi, Feb 28 2016
    
  • Mathematica
    Table[5 (n + 1) ((n + 4)/2), {n, 0, 45}]
    Table[Sum[5 (k + 2), {k, 0, n}], {n, 0, 45}]
    LinearRecurrence[{3, -3, 1}, {10, 25, 45}, 46]
  • PARI
    a(n) = 5*(n + 1)*(n + 4)/2; \\ Michel Marcus, Feb 29 2016
    
  • PARI
    Vec(5*(2-x)/(1-x)^3 + O(x^100)) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 5*(2 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} 5*(k + 2) = Sum_{k=0..n} A008587(k + 2).
Sum_{n>=0} 1/a(n) = 11/45 = 0.24444444444... = A040002.
a(n) = 5*A000096(n+1).
a(n) = A055998(2*n+2) + A055998(n+1). - Bruno Berselli, Sep 23 2016
E.g.f.: 5*exp(x)*(4 + 6*x + x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A360176 Triangle read by rows. T(n, k) = Sum_{j=k..n} binomial(n, j) * (-j)^(n - j) * (-1)^(j - k)* A360177(j, k).

Original entry on oeis.org

1, 0, 1, 0, -5, 1, 0, 37, -15, 1, 0, -393, 223, -30, 1, 0, 5481, -3815, 745, -50, 1, 0, -95053, 76051, -18870, 1865, -75, 1, 0, 1975821, -1749811, 514381, -65730, 3920, -105, 1, 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1
Offset: 0

Views

Author

Peter Luschny, Jan 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,         1;
[2] 0,        -5,        1;
[3] 0,        37,      -15,         1;
[4] 0,      -393,      223,       -30,       1;
[5] 0,      5481,    -3815,       745,     -50,       1;
[6] 0,    -95053,    76051,    -18870,    1865,     -75,    1;
[7] 0,   1975821, -1749811,    514381,  -65730,    3920, -105,    1;
[8] 0, -47939601, 45876335, -15316854, 2358181, -183610, 7322, -140, 1;
		

Crossrefs

Cf. A360177, A273954 (column 1), A028895 (subdiagonal).

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j) * (-j)^(n - j) * (-1)^(j - k) * A360177(j, k), j = k..n): for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Alternative:
    egf := k -> (1 - exp(-LambertW(x*exp(-x))))^k / k!:
    ser := k -> series(egf(k), x, 22): T := (n, k) -> n!*coeff(ser(k), x, n):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;

Formula

E.g.f. of column k: (1 - exp(-LambertW(x*exp(-x))))^k / k!.

A086922 Number of idempotent n X n (0,1) matrices over the reals.

Original entry on oeis.org

1, 2, 8, 50, 452, 5682, 96608, 2185738, 65108492
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003

Keywords

Comments

From Torlach Rush, Jun 18 2020: (Start)
Let m(n,k) be the number of idempotent n X n (0,1) matrices with k entries equal to 1. Then:
k | m(n,k)
-----|------------------------------------------------------
0 | 1
1 | n
2 | A028895(n - 1)
3 | 19 * A000292(n - 2)
4 | ((n - 3) (n - 2) (n - 1) (35 n - 124))/8
5 | ((n - 4) (n - 3) (n - 2) (n - 1) (631 n - 2675))/120
...
Conjecture: There is no closed form expression for this sequence.
(End)

Crossrefs

Extensions

a(5)-a(6) from Torlach Rush, Jun 17 2020
a(7)-a(8) from A222821 added by Giovanni Resta, Jun 23 2020

A330082 a(n) = 5*A064038(n+1).

Original entry on oeis.org

0, 5, 15, 15, 25, 75, 105, 70, 90, 225, 275, 165, 195, 455, 525, 300, 340, 765, 855, 475, 525, 1155, 1265, 690, 750, 1625, 1755, 945, 1015, 2175, 2325, 1240, 1320, 2805, 2975, 1575, 1665, 3515, 3705, 1950, 2050, 4305, 4515, 2365, 2475, 5175, 5405, 2820, 2940
Offset: 0

Views

Author

Paul Curtz, Dec 01 2019

Keywords

Comments

Main column of a pentagonal spiral for A026741:
(25)
49 (15) 31
24 29 (15) 8 16
47 14 7 ( 5) 3 17 33
23 27 13 2 ( 0) 1 7 9 17
45 13 6 3 1 4 19 35
22 25 11 5 9 10 18
43 12 23 11 21 37
21 41 20 39 19
a(n) = 5 * A064038(n+1) from a pentagonal spiral.
Compare to A319127 = 6 * A002620 in the hexagonal spiral:
22 23 23 22 (24)
20 12 13 13 (12) 25
21 10 5 4 ( 6) 14 25
21 11 5 1 ( 0) 7 15 24
20 11 4 1 ( 0) 2 7 15 26
18 10 2 3 3 6 14 27
19 8 9 9 8 16 27
19 18 16 17 17 26
30 28 29 29 28

Crossrefs

Programs

  • Mathematica
    A330082[n_]:=5Numerator[n(n+1)/4];Array[A330082,100,0] (* Paolo Xausa, Dec 04 2023 *)
  • PARI
    concat(0, Vec(5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3) + O(x^50))) \\ Colin Barker, Dec 08 2019

Formula

a(n) = A026741(A028895(n)).
From Colin Barker, Dec 08 2019: (Start)
G.f.: 5*x*(1 + 4*x^3 + x^6) / ((1 - x)^3*(1 + x^2)^3).
a(n) = 3*a(n-1) - 6*a(n-2) + 10*a(n-3) - 12*a(n-4) + 12*a(n-5) - 10*a(n-6) + 6*a(n-7) - 3*a(n-8) + a(n-9) for n>8.
a(n) = (-5/16 + (5*i)/16)*(((-3-3*i) + (-i)^n + i^(1+n))*n*(1+n)) where i=sqrt(-1).
(End)

Extensions

More terms from Colin Barker, Dec 22 2019
Name corrected by Paolo Xausa, Dec 04 2023

A342381 Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0

Views

Author

Peter Kagey, Mar 09 2021

Keywords

Comments

Equivalently the number of symmetries of the n-dimensional cross-polytope that fix exactly 2*k vertices.
If a facet of the hypercube is fixed, then the opposite facet must also be fixed.

Examples

			Table begins:
n\k |         0        1        2       3      4     5    6   7 8 9
----+--------------------------------------------------------------
  0 |         1
  1 |         1        1
  2 |         5        2        1
  3 |        29       15        3       1
  4 |       233      116       30       4      1
  5 |      2329     1165      290      50      5     1
  6 |     27949    13974     3495     580     75     6    1
  7 |    391285   195643    48909    8155   1015   105    7   1
  8 |   6260561  3130280   782572  130424  16310  1624  140   8 1
  9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
     2
   +---+
  3|   |1;
   +---+
     4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
     4           2
   +---+       +---+
  3|   |1 and 1|   |3;
   +---+       +---+
     2           4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
     1         4         3         3            1
   +---+     +---+     +---+     +---+        +---+
  2|   |4,  1|   |3,  4|   |2,  2|   |4, and 4|   |2.
   +---+     +---+     +---+     +---+        +---+
     3         2         1         1            3
		

Crossrefs

Columns and diagonals: A000354 (k=0), A161937 (k=1), A028895 (n=k+2).
Row sums are A000165.

Programs

  • PARI
    f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
    T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021

Formula

T(n,k) = A114320(2n,k)/A001147(n).
T(n,k) = A000354(n-k)*binomial(n,k).
Previous Showing 21-30 of 33 results. Next