cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A200998 Triangular numbers, T(m), that are three-quarters of another triangular number: T(m) such that 4*T(m)=3*T(k) for some k.

Original entry on oeis.org

0, 21, 4095, 794430, 154115346, 29897582715, 5799976931385, 1125165627105996, 218276331681631860, 42344483180609474865, 8214611460706556491971, 1593592278893891349967530, 309148687493954215337208870, 59973251781548223884068553271
Offset: 0

Views

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

For n>1, a(n) = 194*a(n-1) - a (n-2) + 21. See A200993 for generalization.

Examples

			4*0 = 3*0.
4*21 = 3*28.
4*4095 = 3*5640.
4*794430 = 3*1059240.
		

Crossrefs

Programs

  • Magma
    I:=[0,21]; [n le 2 select I[n] else  194*Self(n-1) - Self(n-2) + 21: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
  • Mathematica
    LinearRecurrence[{195, -195, 1}, {0, 21, 4095}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
  • PARI
    concat(0, Vec(21/(1 - 195*x + 195*x^2 - x^3) + O(x^99))) \\ Charles R Greathouse IV, Dec 20 2011
    

Formula

G.f.: (21*x)/(1 - 195*x + 195*x^2 - x^3).
From Colin Barker, Mar 02 2016: (Start)
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3) for n>2.
a(n) = ((97+56*sqrt(3))^(-n)*(-1+(97+56*sqrt(3))^n)*(-7+4*sqrt(3)+(7+4*sqrt(3))*(97+56*sqrt(3))^n))/128.
(End)

A201003 Triangular numbers, T(m), that are four-fifths of another triangular number: T(m) such that 5*T(m) = 4*T(k) for some k.

Original entry on oeis.org

0, 36, 11628, 3744216, 1205625960, 388207814940, 125001710784756, 40250162664876528, 12960427376379457296, 4173217365031520372820, 1343763031112773180590780, 432687522800947932629858376, 139324038578874121533633806328, 44861907734874666185897455779276
Offset: 0

Views

Author

Charlie Marion, Dec 20 2011

Keywords

Comments

Also, numbers m such that 8*m+1 and 10*m+1 are squares. Example: 8*1205625960+1 = 98209^2 and 12056259601 = 109801^2. - Bruno Berselli, Mar 03 2016

Examples

			5*0 = 4*0;
5*36 = 4*45;
5*11628 = 4*14535;
5*3744216 = 4*4680270.
		

Crossrefs

Programs

  • Magma
    m:=20; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(36*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    triNums = Table[(n^2 + n)/2, {n, 0, 4999}]; Select[triNums, MemberQ[triNums, (5/4)#] &] (* Alonso del Arte, Dec 20 2011 *)
    CoefficientList[Series[-36 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
    LinearRecurrence[{323,-323,1},{0,36,11628},20] (* Harvey P. Dale, Dec 21 2015 *)
  • PARI
    concat(0, Vec(36*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n>1, a(n) = 322*a(n-1) - a(n-2) + 36. See A200993 for generalization.
G.f.: 36*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18+(9-4*sqrt(5))*(161+72*sqrt(5))^(-n)+(9+4*sqrt(5))*(161+72*sqrt(5))^n)/160.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n>2. (End)
a(n) = 36*A298271(n). - Amiram Eldar, Dec 01 2024

A322170 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = A321768(n, k) * A321769(n, k) / 2.

Original entry on oeis.org

6, 30, 210, 60, 84, 1320, 630, 1560, 7140, 1386, 924, 2340, 210, 180, 4620, 2730, 10920, 45144, 7854, 7980, 23184, 2574, 5016, 63336, 26910, 49476, 242556, 50490, 25200, 57420, 4290, 3570, 34650, 12540, 14490, 79794, 18564, 5610, 10374, 504, 330, 11970, 7956
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2018

Keywords

Comments

This sequence gives the areas of the primitive Pythagorean triangles corresponding to the primitive Pythagorean triples in the tree described in A321768.
If we order the terms in this sequence and keep duplicates then we obtain A024406.

Examples

			The first rows are:
   6
   30, 210, 60
   84, 1320, 630, 1560, 7140, 1386, 924, 2340, 210
T(1,1) corresponds to the area of the triangle with sides 3, 4, 5; hence T(1, 1) = 3 * 4 / 2 = 6.
		

Crossrefs

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1, 1] * t[2, 1] / 2)

Formula

Empirically:
- T(n, 1) = A055112(n),
- T(n, (3^(n-1) + 1)/2) = A029549(n),
- T(n, 3^(n-1)) = A069072(n-1).

A201004 Triangular numbers, T(m), that are five-quarters of another triangular number; T(m) such that 4*T(m) = 5*T(k) for some k.

Original entry on oeis.org

0, 45, 14535, 4680270, 1507032450, 485259768675, 156252138480945, 50312703331095660, 16200534220474321620, 5216521706289400466025, 1679703788890966475738475, 540859403501184915787322970, 174155048223592651917042257910, 56077384668593332732371819724095
Offset: 0

Views

Author

Charlie Marion, Feb 15 2012

Keywords

Examples

			4*0 = 5*0.
4*45 = 5*36.
4*14535 = 5*11628.
4*4680270 = 5*3744216.
		

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(45*x/((1-x)*(1-322*x+x^2)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    LinearRecurrence[{323, -323, 1}, {0, 45, 14535}, 20] (* T. D. Noe, Feb 15 2012 *)
    CoefficientList[Series[-45 x/((x - 1) (x^2 - 322 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
  • PARI
    concat(0, Vec(45*x/((1-x)*(1-322*x+x^2)) + O(x^15))) \\ Colin Barker, Mar 02 2016
    

Formula

For n > 1, a(n) = 322*a(n-1) - a(n-2) + 45. See A200994 for generalization.
G.f.: 45*x / ((1-x)*(x^2-322*x+1)). - R. J. Mathar, Aug 10 2014
From Colin Barker, Mar 02 2016: (Start)
a(n) = (-18 + (9-4*sqrt(5))*(161+72*sqrt(5))^(-n) + (9+4*sqrt(5))*(161+72*sqrt(5))^n)/128.
a(n) = 323*a(n-1) - 323*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 45*A298271(n). - Amiram Eldar, Dec 01 2024

Extensions

a(7) corrected by R. J. Mathar, Aug 10 2014

A226500 Triangular numbers representable as 3 * x^2.

Original entry on oeis.org

0, 3, 300, 29403, 2881200, 282328203, 27665282700, 2710915376403, 265642041604800, 26030209161894003, 2550694855824007500, 249942065661590841003, 24491771739980078410800, 2399943688452386093417403, 235169989696593857076494700, 23044259046577745607403063203
Offset: 1

Views

Author

Alex Ratushnyak, Jun 09 2013

Keywords

Crossrefs

Cf. A029549 (triangular numbers representable as x^2 + x).

Programs

  • C
    #include 
    #include 
    typedef unsigned long long U64;
    U64 isTriangular(U64 a) {   // input must be < 1ULL<<63
        U64 r = sqrt(a*2);
        return (r*(r+1) == a*2);
    }
    int main() {
      for (U64 j, i = 0; (j=i*i*3) < (1ULL<<63); i++)
          if (isTriangular(j)) printf("%llu, ", j);
      return 0;
    }
  • Mathematica
    a[1]=0; a[2]=3; a[3]=300; a[n_] := a[n] = 99*(a[n-1] - a[n-2]) + a[n-3]; Array[a, 10] (* Giovanni Resta, Jun 09 2013 *)
    Rest@ CoefficientList[Series[3 x^2 (1 + x)/((1 - x) (1 - 98 x + x^2)), {x, 0, 16}], x] (* or *)
    3 LinearRecurrence[{99, -99, 1}, {0, 1, 100}, 16] (* Michael De Vlieger, Mar 03 2016, latter after Vincenzo Librandi at A108741 *)

Formula

a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3), for n > 3. a(n) = floor((49 + 20*sqrt(6))^(n-1)/32). - Giovanni Resta, Jun 09 2013
G.f.: 3*x^2*(1+x)/((1-x)*(1-98*x+x^2)); a(n)=3*A108741(n-1). - Joerg Arndt, Jun 10 2013
a(n) = (49+20*sqrt(6))^(-n)*(49+20*sqrt(6)-2*(49+20*sqrt(6))^n+(49-20*sqrt(6))*(49+20*sqrt(6))^(2*n))/32. - Colin Barker, Mar 03 2016

Extensions

a(12)-a(15) from Giovanni Resta, Jun 09 2013

A341894 For square n > 0, a(n) = 0; for nonsquare n > 0, a(n) is the rank r such that t(r) + t(r-1) = u(r) - u(r-1) - 1, where u(r) and t(r) are indices of some triangular numbers in the Diophantine relation T(u(r)) = n*T(t(r)).

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 2, 2, 4, 2, 2, 0, 2, 2, 3, 2, 4, 4, 2, 2, 0, 3, 2, 4, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 0, 3, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 8, 2, 2, 0, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 2, 2, 0, 3, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 4, 2, 2, 0, 2, 2, 4, 2, 4, 8, 2, 2, 8, 2
Offset: 1

Views

Author

Vladimir Pletser, Mar 06 2021

Keywords

Comments

Let t(i) and u(j) be the indices of triangular numbers that satisfy the Diophantine relation T(u(j)) = n*T(t(i)) for some integers i and j. The number of solutions (t(i), u(j)) of T(u(j)) = n*T(t(i)) is 0 or 1 for square n, and an infinity for nonsquare n.
For square n, a(n) is arbitrarily set to 0.
For nonsquare n, a(n) is the index r in the sequence of t(i) and u(j) such that t(r) + t(r-1) = u(r) - u(r-1) - 1.
Alternatively, for nonsquare n, a(n) is the index r such that the ratio t(i)/t(i-r) is decreasing monotonically without jumps for increasing values of i.
Alternatively, for n > 4, a(n) is the index r such that the ratio t(r)/t(r-1) varies between (s+1)/(s-1) and (s+2)/s, with s = [sqrt(n)], where [x] = floor(x).
Alternatively, for nonsquare n, a(n) is the number of fundamental solutions (X_f, Y_f) of the generalized Pell equation X^2 - n*Y^2 = 1 - n providing odd solutions, i.e., with X_f odd and Y_f odd (or Y_f even if y_f is odd, where y_f is the fundamental solution of the associated simple Pell equation x^2 - n*y^2 = 1).

Examples

			The following table gives the first values of nonsquare n and a(n) and the sequences yielding the values of t, u, T(t) and T(u) such that T(u) = n*T(t).
n       2       3       5       6       7       8      10
a(n)    1       1       2       2       2       2       3
t    A053141 A061278 A077259 A077288 A077398 A336623  A341893*
u    A001652 A001571 A077262 A077291 A077401 A336625* A341895*
T(t) A075528 A076139 A077260 A077289 A077399 A336624  A068085*
T(u) A029549 A076140 A077261 A077290 A077400 A336626*   -
With a(n) = r, the definition t(r) + t(r-1) = u(r) - u(r-1) - 1 yields:
- For n = 2, a(n) = 1: A053141(1) + A053141(0) = A001652(1) - A001652(0) - 1, i.e., 2 + 0 = 3 + 0 - 1 = 2.
- For n = 5, a(n) = 2: A077259(2) + A077259(1) = A077262(2) - A077262(1) - 1, i.e., 6 + 2 = 14 - 5 - 1 = 8.
- For n = 10, a(n) = 3: A341893(3+1*) + A341893(2+1*) = A341895(3+1*) - A341895(2+1*) - 1, i.e., 12 + 6 = 39 - 20 - 1 = 18.
Note that for those sequences marked with an *, the first term 0 appears for n = 1, contrary to all the other sequences, where the first term 0 appears for n = 0; the numbering must therefore be adapted and 1 must be added to compensate for this shift in indices.
The monotonic decrease of t(i)/t(i-r) can be seen also as:
- For n = 2, a(n) = 1: for 1 <= i <= 6, A053141(i)/A053141(i-1) decreases monotonically from 7 to 5.829.
- For n = 5, a(n) = 2: for 3 <= i <= 8, A077259(i)/A077259(i-2) decreases monotonically from 22 to 17.948, while A077259(i)/A077259(i-1) takes values alternatively varying between 3 and 2.618 and between 7.333 and 6.855.
- For n = 10, a(n) = 3: for 4 <= i <= 10, A341893(i)/A341893(i-3) decreases monotonically from 55 to 38, while A077259(i) / A077259(i-1) takes values alternatively varying between 6 and 4.44 and between 2 and 1.925.
For n > 4, the relation (s+1)/(s-1) <=  t(r)/t(r-1) <= (s+2)/s, with s = [sqrt(n)], yields:
- For n = 5, a(n) = 2: A077259(2)/A077259(1) = 6/2 = 3, and s = [sqrt(5)] = 2, (s+1)/(s-1) = 3 and (s+2)/s = 2.
- For n = 10, a(n) = 3: A077259(3+1*)/A077259(2+1*) = 12/6 = 2, and s = [sqrt(10)] = 3, (s+1)/(s-1) = 2 and (s+2)/s = 5/3 = 1.667.
Finally, the number of fundamental solutions of the generalized Pell equation is as follows.
- For n = 2, X^2 - 2*Y^2 = -1 has a single fundamental solution, (X_f, Y_f) = (1, 1), and the rank a(n) is 1.
- For n = 5, X^2 - 5*Y^2 = -4 has two fundamental solutions, (X_f, Y_f) = (1, 1) and (-1, 1), and the rank a(n) is 2.
- For n = 10, X^2 - 10*Y^2 = -9 has three fundamental solutions, (X_f, Y_f) = (1, 1), (-1, 1), and (9, 3), and the rank a(n) is 3.
		

References

  • J. S. Chahal and H. D'Souza, "Some remarks on triangular numbers", in A.D. Pollington and W. Mean, eds., Number Theory with an Emphasis on the Markov Spectrum, Lecture Notes in Pure Math, Dekker, New York, 1993, 61-67.

Crossrefs

A216267 Numbers that are both tetrahedral and pronic.

Original entry on oeis.org

0, 20, 56, 7140, 1414910
Offset: 1

Views

Author

Alex Ratushnyak, Mar 15 2013

Keywords

Comments

Intersection of A000292 and A002378.
The equation y*(y+1) = x*(x+1)*(x+2)/6 leads to an elliptic curve, which has a finite number of solutions, all of which are already listed. - Max Alekseyev, Dec 28 2024

Crossrefs

Programs

  • Mathematica
    t = {}; Do[tet = n (n + 1) (n + 2)/6; s = Floor[Sqrt[tet]]; If[s^2 + s == tet, AppendTo[t, tet]], {n, 0, 1000}]; t (* T. D. Noe, Mar 18 2013 *)
    With[{nn=50000},Intersection[Binomial[Range[0,nn]+2,3],Table[n(n+1),{n,nn}]]] (* Harvey P. Dale, Apr 04 2016 *)
  • Python
    def rootPronic(a):
        sr = 1<<33
        while a < sr*(sr+1):
          sr>>=1
        b = sr>>1
        while b:
            s = sr+b
            if a >= s*(s+1):
              sr = s
            b>>=1
        return sr
    for i in range(1<<20):
          a = i*(i+1)*(i+2)//6
          t = rootPronic(a)
          if a == t*(t+1):
            print(a)

Extensions

fini, full keywords added by Max Alekseyev, Dec 28 2024

A221563 Triangular numbers representable as t*p, where t>1 is a triangular number, p>1 is a prime power (A025475).

Original entry on oeis.org

120, 528, 1485, 3240, 58653, 70125, 139128, 609960, 886446, 902496, 1062153, 1844160, 4017195, 8386560, 8759205, 38618866, 39760903, 122062500, 160554240, 703893960, 741105750, 797222415, 6115239936, 10854464130, 23667373395, 82103447700, 131197213890
Offset: 1

Views

Author

Alex Ratushnyak, May 03 2013

Keywords

Examples

			Triangular(32) = 528 = 66 * 8, because 66 is a triangular number and 8 is a prime power, 528 is in the sequence.
Triangular(54) = 1485 = 55 * 27, because 55 is a triangular number and 27 is a prime power, 1485 is in the sequence.
		

Crossrefs

Previous Showing 31-38 of 38 results.